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Heterogeneous wealth dynamics: 
On the roles of risk and ability 

 

 

Abstract:  
This paper studies the causal mechanisms behind poverty traps, building on evidence of 
nonlinear wealth dynamics among a poor pastoralist population, the Boran from southern 
Ethiopia. In particular, it explores the roles of adverse weather shocks and individual 
ability to cope with such shocks in conditioning wealth dynamics. Using original data, we 
establish pastoralists’ expectations of herd dynamics and show both that pastoralists 
perceive the nonlinear long-term dynamics that characterize livestock wealth in the 
region and that this pattern results from adverse weather shocks. We estimate a stochastic 
herd growth frontier that yields herder-specific estimates of unobservable ability on 
which we then condition our simulations of wealth dynamics. We find that those with 
lower ability converge to a unique dynamic equilibrium at a small herd size, while those 
with higher ability exhibit multiple stable dynamic wealth equilibria. Our results 
underscore the criticality of asset protection against exogenous shocks in order to 
facilitate wealth accumulation and economic growth and the importance of incorporating 
indicators of ability in the targeting of asset transfers, as we demonstrate with simulations 
of alternative asset transfer designs.  
 
 
Keywords: ability, herd restocking, poverty traps, regression trees, shocks, subjective 
expectations. 
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1. Introduction 

Contemporary policy debates are rife with discussion of “poverty traps”.1 There 

exist several theoretical models that combine some non-convex technology with some 

market failure to explain why “the poor stay poor and the rich stay rich”.2 But do poverty 

traps exist in the data?  The empirical literature has mainly focused on searching for a 

threshold effect associated with multiple dynamic equilibria in the growth process, with 

one such equilibrium below a poverty line. The results of such studies remain quite 

mixed, with some studies (e.g., Dercon 1998, Lybbert et al. 2004, Adato et al. 2006, 

Barrett et al. 2006) finding support for the hypothesis while others (e.g., McKenzie and 

Woodruff 2003, Jalan and Ravallion 2004, Lokshin and Ravallion 2004, Antman and 

McKenzie 2005) find no evidence of such a threshold.  

Nonlinear dynamics are sensitive to shocks that perturb their key variables. Not 

only it is possible to use this feature to test for the presence of growth thresholds (as in 

Lokshin and Ravallion 2004), but it is possible to conceive that a series of good draws 

from the distribution of states of nature can move some fortunate individuals above the 

threshold.3 One contribution of this paper is to emphasize how negative shocks may 

generate nonlinear dynamics associated with persistent poverty.  In particular, we show 

that we only observe multiple dynamic wealth equilibria among our subject population in 

adverse states of nature.  

                                                 
1 See, for example, Sachs (2005) or United Nations Millennium Project (2005). 
2 See Azariadis and Stachurski (forthcoming) or Bowles et al. (2006) for good reviews of the theoretical 
and early empirical literature on poverty traps. 
3 See Easterly et al.’s (1993) discussion of the effect of “good luck” on cross country growth and the micro 
evidence on the effects of favorable coffee price shocks on poverty in Uganda (Deininger and Okidi 2003). 
See Acemoglu and Zillibotti (1997) for a theoretic model where growth is ergodic but poverty can persist.  
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This paper will also argue that risk is not the only factor shaping wealth 

dynamics. As the empirical literature on macroeconomic growth suggests, we argue that 

one needs to consider the possibility of “convergence clubs” based on intrinsic, 

unobservable characteristics such as time preferences, skills or disabilities.4 Perhaps the 

talented can more easily escape poverty or perhaps the disabled are especially unlikely to 

do so, regardless of initial wealth.  The role unobservable ability plays in determining 

earnings has long been recognized in, for example, studies of the private returns to 

education (Card 1995) or in analysis of who becomes an entrepreneur (Evans and 

Jovanovic 1989). Nevertheless, we know of no other study that explicitly considers the 

role of individual heterogeneity in shaping wealth dynamics.  

These two explanations, risk and ability, may be closely related. It may be that all 

agents follow a path dynamic that converges towards a high-level equilibrium when faced 

with favorable states of nature and that low-level equilibria only arise because shocks 

routinely knock some backwards, before one’s accumulated gains become sufficient to 

provide adequate self-insurance (Dercon 1998).  In that case, risk can be a source of 

persistent poverty not only because it induces ex ante risk management that causes the 

poor to choose lower expected return portfolios (Rosenzweig and Binswanger 1993) but 

because differential ability to cope ex post  with shocks may distinguish high performers 

from their less fortunate counterparts. Thus, variation in welfare dynamics across states 

of nature may be central to understanding how both individual-level characteristics and 

initial conditions affect expected welfare dynamics.   

                                                 
4 Baumol (1986), DeLong (1988) and Canova (2004) define and discuss the estimation of convergence 
clubs in macroeconomic growth data.  
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Finally, the policy implications of the convergence club and threshold-based 

multiple equilibria mechanisms differ markedly. If poverty is a unique dynamic 

equilibrium because of immutable individual characteristics, ongoing social transfers may 

be the only available remedy for an unacceptably low standard of living.  But if poverty 

results from initial asset holdings insufficient to clear a critical minimum endowment 

threshold and thereby follow a positive accumulation path, then asset transfers or changes 

to the productivity of existing assets can yield increases in wealth that move beneficiaries 

onto a different path dynamic, towards a higher-level equilibrium, thereby diminishing 

the need for ongoing transfers.  If both processes are at play within a population, then 

effective targeting of appropriate interventions depends on identifying the relevant 

subpopulation to which a given poor household belongs. Sorting out the (potentially 

multiple) mechanisms that underpin persistent poverty is therefore enormously important 

in practical terms, but also quite difficult methodologically. 

This paper explores these issues empirically.  We unpack and extend the results of 

Lybbert et al. (2004), who analyzed wealth dynamics among Boran pastoralists, a poor 

population in southern Ethiopia.  Cattle are the Boran’s major (in many cases, the only 

non-human) asset and herd evolution is characterized by boom-and-bust cycles 

determined by drought and biological reproduction. Using 17-year herd history data, 

Lybbert et al. find herd dynamics that follow an S-shaped curve with two stable dynamic 

equilibria (at roughly 1 and 35-40 cattle), separated by an unstable dynamic equilibrium, 

a threshold at 15-20 cattle. The authors conjecture that this threshold results from a 

minimum critical herd size necessary to undertake migratory herding to deal with 

spatiotemporal variability in forage and water availability.  Those with smaller herds are 



 5

forced to stay near their base camps, where pasture conditions soon get degraded, leading 

to a collapse of herd size towards the low-level stable equilibrium, while those with 

bigger herds can migrate in search of adequate water and pasture, enabling them to 

sustain far larger herds.  We collected new data among the same population so as to 

explore the role of shocks and household-specific ability in shaping wealth dynamics.   

The next section briefly explains the data.  In section 3, we use data on 

pastoralists’ expectations of herd size one year ahead, given different values of initial 

herd size, to simulate long-run equilibria that correspond closely with those identified in 

Lybbert et al. (2004).  Pastoralists appear to perceive the dynamics reflected in herd 

history data.  We disaggregate these dynamics as a function of respondents’ expected 

rainfall states and find that multiple equilibria arise exclusively in adverse states of 

nature.  Under favorable rainfall regimes, respondents’ subjective perceptions suggest a 

smooth asset growth process towards a unique, high-level dynamic equilibrium. Given 

manifest variation in expected herd dynamics under adverse states of nature, section 4 

explores the hypothesis that herder-specific ability, which we derive using stochastic 

frontier estimation methods, conditions wealth dynamics.  This appears true in both the 

herders’ expectations data and in herd history data. In Section 5 we apply this approach to 

the analysis of the (expected) evolution of the wealth of a sample of herders in this 

region.  We find evidence that the incorporation of ability does make a difference in 

terms of expected wealth and inequality in this system. Section 6 concludes, stressing the 

policy implications of these findings with respect to complex wealth dynamics and the 

centrality of shocks and individual ability to understanding the existence of multiple 

equilibria in this system. 
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2. Data 

We employ three data sets. The first is that used by Lybbert et al. (2004), 

originally collected by and described in Desta (1999), reflecting 17 years of herd histories 

for 55 Boran  pastoralist households drawn from four communities (woredas) in southern 

Ethiopia (Arero, Mega, Negelle and Yabello).  Because 16 of the sample households 

were formed within the 17 year period, this is an uneven panel of data, with 833 total 

observations. The data were collected using a stratified random sampling design, using 

detailed interviews held with entire extended families whose collective recall permitted 

the construction of reliable panel data on herd histories, including mortality, marketing, 

gifts and loans, slaughtering and calving.5 

The second consists of household survey data collected from 120 randomly 

selected Boran pastoralist households in the same four woredas of southern Ethiopia, 

although the respondent households differ from those Desta surveyed. These data were 

collected every three months, March 2000-June 2002, and then annually each September-

October starting in 2003.6 The data include rich detail on household composition, 

educational attainment (although very few respondents are literate or attended any 

school), migration histories, changes in herds, shocks, etc.   

The third data set consists of subjective expectations of herd dynamics we elicited 

from the PARIMA survey households in 2004. The use of elicited expectations to study 

decision-making was recently reviewed by Manski (2004). Although the efficacy of 

                                                 
5 Prior studies have confirmed the reliability of herd history recall data collected among African pastoralists 
(Grandin 1983, Assefa 1990, Ensminger 1992).  
6 The data were collected by the Pastoral Risk Management (PARIMA) project of the USAID Global 
Livestock Collaborative Research Support Program.  Barrett et al. (2004) describe the location, survey 
methods and available variables.  
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elicited expectations for testing economic hypotheses has been well established, most 

such studies have taken place in high-income countries.  Important exceptions are 

Delavande (2004), on the efficacy of contraceptive methods in Ghana, and Luseno et al. 

(2003) and Lybbert et al. (forthcoming) on pastoralists’ rainfall expectations in East 

Africa.  Given the paucity of studies of low-income country respondents’ subjective 

expectations, it is worth explaining in some detail how we elicited these data.  

We started by randomly selecting four hypothetical initial herd sizes for each 

respondent, one from each of the intervals defined by the equilibria identified by Lybbert 

et al. (2004).7 Respondents were then asked their expectations for rainfall next year 

(choosing between good, normal or bad8) and to assume a cattle herd of standard 

composition for the region (in terms of age and sex of the animals). After thus framing 

the problem, we asked each respondent to define the maximum and the minimum herd 

size they would expect to have one year later if they themselves started the year with the 

randomly assigned initial herd size. These bounds provide a natural anchor for the next 

step, in which we asked respondents to distribute, on a board, 20 stones among herd sizes 

between the minimum and the maximum previously elicited, thereby describing their 

subjective herd size distribution one year ahead conditional on the randomly assigned 

initial herd size. Finally, each respondent was asked if s/he had ever managed a herd 

approximately equal in size to the initial value provided as the random seed. The 

elicitation of the probability distribution function is an appropriate technique under these 

                                                 
7 The intervals are [1,5), [5, 15), [15, 40) and [40, 60]. 
8 Published rainfall forecasts, such as those disseminated by the regional Drought Monitoring Centre and 
government and nongovernmental organization extension officers, use precisely this sort of trinomial 
rainfall forecast, so it is familiar to respondents (Luseno et al. 2003, Lybbert et al. forthcoming). The data 
were collected well into the rainy season, hence these are not uninformed priors. 
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circumstances (Morgan and Henrion 1990) and allows us to compute conditional 

distributions and their moments. 

 

3. Expected herd dynamics in a stochastic environment 

Figure 1 presents the scatter plot and kernel regression9 relating expected herd 

size one year ahead (herd1) and initial herd size (herd0), conditional on ever having had a 

herd with a similar size for our sample of 285 observations.10 The solid. 45-degree line 

from the origin represents the dynamic equilibria where herd sizes are equal across 

periods.  Three points emerge immediately from comparing pastoralists’ subjective 

expectations of one year-ahead herd dynamics (figure 1) with the dynamics revealed by 

Desta/Lybbert et al.’s herd history data (the dashed line in figure 2). First, both exhibit 

multiple dynamic equilibria consistent with the notion of a poverty trap.  Second, 

however, the equilibria identified by pastoralists appear to differ markedly from those 

apparent in herd history data, both with respect to their location and stability.  Notably, 

herd accumulation occurs for a wider range of initial herd sizes, while herd losses seem a 

relatively marginal occurrence. This would seem to suggest a different story from the one 

described by herd history data and detailed studies of the system (Coppock 1994). 

Finally, there is considerable dispersion in pastoralists’ expectations of herd dynamics 

                                                 
9 We use the Nadaraya-Watson nonparametric regression, with the Epanechnikov kernel and bandwidth of 
4.545. The value of bandwidth was selected using Silverman’s (1986) rule of thumb, as determined by the 
“bounds for Stata” package (Beresteanu and Manski 2000). We apply the same bandwidth choice 
procedure in the remainder of this paper, unless otherwise noted. 
10 23 of the 464 total observations (116 respondents with four different starting values each) do not include 
a herd size prediction, either because respondents were unwilling to make predictions about rainfall or 
because they were unable to distribute the stones across the board. The latter problem occurred mainly for 
bigger initial herd sizes, when the difference between the maximum and the minimum was sometimes quite 
large. Of the remaining 441 observations, in 285 cases (64.6%) the respondents had prior personal 
experience managing a herd of comparable size.  
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conditional on a given starting herd size.  If one interprets this variation as reflecting 

pastoralist-specific herding abilities – assuming each pastoralist accurately perceives his 

or her own herd dynamics given his or her individual aptitude for herding – then this 

suggests that ability plays a significant role in wealth dynamics.   

These casual comparisons invite more careful analysis, especially as regards the 

intersection of rainfall conditions and herder ability.  The pattern exhibited in the actual 

herd history data (figure 2) is the result of a mixture of environmental conditions over a 

period of 17 years.  Meanwhile, the data on herders’ subjective assessments of herd 

dynamics (figure 1) represent only the year-ahead expectation under necessarily more 

limited rainfall variability regimes.11  Put differently, the dashed line in figure 2 reflects 

herd dynamics conditional on rainfall across a varied mixture of states of nature while 

figure 1 reflects the union of the conditional dynamics with a more limited mixing.   

Figures 3a and 3b disaggregate herders’ subjective herd dynamics, now 

conditioning on rainfall expectations.  The difference is striking.  The relation between 

expected and initial herd size is nonlinear and suggests multiple equilibria only in the 

case of bad rainfall conditions.  Under good or normal climatic conditions (and perhaps 

unsurprisingly), herders expect herds to grow no matter the initial herd size. The 

dispersion around the expected values is also much bigger under conditions of bad 

rainfall than in a good or normal year. Herders exhibit far more heterogeneous beliefs 

about their ability to deal with adverse states of nature than with favorable ones.  If we 

                                                 
11 For example, Kamara, Swallow and Kirk (2003) identify three major droughts (1984/85, 1991/92 and 
1995/96) and two periods of excessive rains (1980/81 and 1997/98) in this region over the period covered 
by the Desta/Lybbert et al. data. To these natural disasters, one may add the generalized ethnic clashes 
between the Boran and the Gabra in 1992, following the fall of the Derg regime. 
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are correct in attributing this feature of the data to individual ability, then such 

differences seem to matter most when times are tough.  

In order to simulate pastoralists’ long run expectations of herd dynamics, we need 

data on the expected behavior under more extreme conditions, namely severe drought and 

very good years. To obtain such information, we used a second questionnaire similar to 

the one described above except that we defined rainfall conditions in advance.12 This 

instrument was fielded in only one of the four sites (Dida Hara). The results largely 

correspond with those already reported, showing an almost linear relation between 

expected and initial herd sizes in very good years and a highly nonlinear relation in cases 

of severe drought.13 

In order to generate herders’ subjective expectations of herd dynamics under a 

mixture of states of nature – corresponding to the solid line in figure 2, depicting ten year 

herd transitions in the Desta/Lybbert et al. data – we need to integrate information on 

herd growth expectations (i.e., the relation between herd1 and herd0) conditional on 

rainfall regimes with rainfall data.  We therefore simulate using the elicited 

expectations data previously described and monthly rainfall data for the 4 sites over the 

period 1991-2001.14 Since we must predict out-of-sample in simulating herd evolution for 

large values of initial herd size, we had to estimate the parametric relation between herd1 

                                                 
12 In particular, we asked respondents to consider herd evolution “as if” in 1999, the last major drought, or 
“as if” in a very good year, which we asked them to define based on their own experience. 
13 To conserve space, we omit graphics reflecting these data and nonparametric regressions, although plots 
corresponding to figures 1 and 3 are available upon request. 
14 Average rainfall was 490 mm/year, with a standard deviation of 152 mm/year. Given the skewness and 
the kurtosis of this distribution, we cannot reject the null hypothesis that rainfall follows a normal 
distribution. The minimum annual rainfall over the period was registered in 1999 (259 mm) and the 
maximum in 1997 (765 mm). The probability of such events is 0.064 and 0.035. Given these results, we 
assumed, for simulation purposes, a symmetric distribution, with a probability of extreme events (drought; 
or very good year) equal to 0.10. 
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and herd0. Conditional on each of the four rainfall scenarios (drought, poor rainfall, 

normal/good rainfall, very good), we estimate this relation with a respondent fixed effect 

specification, "i, taking advantage of having repeated observations, r, across different 

herd size intervals on each individual. We thus estimate 

(1)  iriirir     )f(h  h εα ++=  

where f(hir) is a polynomial function of initial herd size.15 Table 1 presents the estimates, 

which reflect the results displayed visually in figures 1 and 3: unambiguous, effectively 

linear expected growth under normal/good/very good rainfall conditions, but a nonlinear 

estimated relation between herd1 and herd0 only under conditions of poor rainfall (and 

drought), and with considerable dispersion so that the precision of those estimates is far 

less than under favorable rainfall regimes.  We then used these estimation results to 

simulate the expected evolution of herd sizes, properly calibrated to impose basic 

biological rules for livestock.16 Figure 4 presents the basic structure of the simulation 

procedure we used.  

Figure 5 presents the mean of 10-year ahead herd size for 500 replicates of this 

simulation with initial herd sizes between 1 and 60. The results are remarkably similar to 

the dynamics revealed by the herd history data (solid line in figure 2), both in the general 

shape of the curve and in the location of the different equilibria.  While the one year 
                                                 
15 Besides the assumptions on the functional form of f(*), we also assumed that εei ~ N (0,z2). Other 
specifications, that replace the fixed effect with other regressors that could affect subjective expectations, 
such as gender, age, experience and migrant status, were considered, but none of those variables proved 
statistically significant, so we omit these results, which are available upon request. We omit higher order 
polynomial terms in the very good and good/normal year specifications because they added nothing given 
the good fit already achieved with a simple linear specification with fixed effects  
16 More precisely, we do not allow for negative herds and impose that biological growth under good rainfall 
conditions is delayed in 2 years, i.e., enough for cows to reproduce. We also constrain the predicted values 
for initial herd sizes above 52 (poor rainfall) and 45 (drought) to be linear, with a slope of 0.03309 and 
0.00913, preventing unbelievable predictions due to the parameter estimates at the boundaries of our 
sample. 
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ahead transitions predicted by the two data sets (figure 1 and the dashed line in figure 2) 

did not match because of the fundamentally different underlying states of nature, once 

one takes into account historical rainfall patterns and simulates the longer-term, decadal 

herd dynamics, it appears that Boran pastoralists have a remarkably accurate 

understanding of the nature of how their herds evolve. In particular, they expect that 

someone with a herd below approximately 15 cattle will eventually lose his wealth, 

collapsing into a destitute equilibrium with 1 animal.  Can we be sure that multiple 

equilibria exist? The answer is “no”; the lower confidence band crosses the equilibrium 

line only once, from above, at the lower level equilibrium (1 animal).  But as we show 

below, this merely reflects our current assumption that all herders follow the same growth 

path.  Once we allow for the possibility of convergence clubs, the differentiated results 

become clearer.  

Concentrating on our average estimates, do these nonlinearities lead to a poverty 

trap? The answer depends, in part, on what one means by a “poverty trap”. In Table 2 we 

quantify the probability of moving between equilibria in a 10 year period given the 

stochastic nature of these shocks. There is a positive probability that a herder starting 

with between 1 and 4 cattle will, 10 years later, have grown his herd.  Indeed, he may 

even be above the accumulation threshold.  The strictest interpretation of a poverty trap – 

that initial conditions totally determine future wealth and the system is non-ergodic (and 

thus the probability of growing is zero) – finds no support in our data. However, the 

probability of moving out of poverty is quite low (less than 12%), suggesting that, in this 

context, the idea of a poverty trap is better associated with a high probability (but not 

certainty) that agents will remain at lower levels of welfare, a weaker but perhaps more 



 13

realistic interpretation of the concept, especially in stochastic environments (Azariadis 

and Stachurski forthcoming).  

Figure 6 synthesizes the discussion thus far by presenting the limiting distribution 

of this stochastic process. The system spends most of its time (78.9 %) with herd sizes 

below 4 cattle, a consequence of the asymmetric effects of rainfall conditions: the large 

losses suffered in periods of drought can only be fully compensated by a series of years 

of good rainfall.17 With such a small probability of being at the high welfare equilibrium 

(around 2%), compounded by the fact that such equilibrium is here defined as the 

residual interval of “herds larger than 40 cattle”, we get a picture of a slow slide into 

generalized poverty that corresponds with others’ description of the system (Coppock 

1994). 

Summarizing the results so far, we find that Boran pastoralists accurately perceive 

long-term herd dynamics characterized by multiple wealth equilibria consistent with the 

notion of a poverty trap: shocks almost totally prevent wealth accumulation that would 

allow those herders at a low level of welfare from escaping poverty. However, these 

dynamics seem entirely the result of an asymmetry in growth rates under different rainfall 

conditions.18  Growth is universally expected in good years while S-shaped dynamics 

seem to result from wealth-differentiated capacity to deal with bad rainfall conditions.   

                                                 
17 It is possible that this behavior reflects an underestimate of the true probability of remaining in the high 
welfare equilibrium identified by Lybbert et al (2004), as a consequence of our assumptions regarding herd 
dynamics outside the range of data for which we have information.  Recall that we assumed that, for herd 
sizes above a certain value and for conditions of poor rainfall or drought, growth rates were a linear 
function of initial herd size. As we show below, it is possible that that is not the case. 
18 This could explain why, for example, Mogues (2004) studying livestock accumulation in other regions of 
Ethiopia in the period 2000-03, with no major shocks in between, does not find evidence of such 
nonlinearities, and why Barrett et al. (2006) find evidence of an S-shaped curve for asset dynamics in the 
northern Kenya PARIMA sample, which included a major drought ending in 2001. 



 14

Our data also show that, even in bad years, not all herders expect their herds to 

shrink. The considerable interhousehold dispersion of beliefs about herd dynamics under 

adverse states of nature suggests that herder-specific characteristics, perhaps especially 

unobserved husbandry skills and related talents we summarize as “ability”, may likewise 

play a central role in conditioning wealth dynamics among these Ethiopian herders. The 

next section investigates this hypothesis via two different methods.  

 

4. Ability and expected herd dynamics 

 Herding is a difficult livelihood.  One must know how to treat livestock diseases 

and injuries, protect cattle against predators, manage their nutrition, navigate to distant 

grazing and watering sites, assist in difficult calving episodes, etc.  Not everyone learns 

and practices these diverse skills equally well.  One would naturally expect more skilled 

herders to enjoy faster herd growth and to be less subject to adverse shocks to herd size 

than less skilled herders.  Put differently, the herd dynamics explored in Lybbert et al. 

(2004) and in the previous section may ignore salient differences in herder ability. 

We explore the impact of differences in herding ability upon herd dynamics by 

using the PARIMA panel data on pastoralist households to estimate herder ability using 

stochastic parametric frontier estimation methods for panel data (Kumbhakar and Lovell 

2000).  More precisely, we estimate the herd growth frontier conditional on household 

attributes and initial period herd size using a composed error term that includes a 

symmetric random component reflecting standard sampling and measurement error, ψ , 
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and a one-sided term reflecting observation-specific but time invariant inefficiency,φ ≥0, 

which we assume follows a truncated normal distribution, N+(µ,σ2
Q): 

(2)    itiit1- tiit    X  )f(h  h ψφβ +−+=  

Since these households have been surveyed since 2000, we can take advantage of 

multiple observations for each herder to compute consistent herder-specific mean 

efficiency measures, i.e., each pastoralist’s proximity to the herd growth frontier that 

provide at least a coarse proxy for herder-specific ability that is not otherwise directly 

observable.   

Table 3 presents estimates of the herd growth frontier based on 2000-1, 2001-2 

and 2002-3 annual observations for the 113 households for which we have complete data 

on each of the covariates.19  Table 4 defines these variables and presents the descriptive 

statistics. Notice that we use an exogenous switching regressions formulation to 

incorporate the possibility of two different growth paths, depending on whether the 

herder is above or below the 15 cattle threshold identified by Lybbert et al. (2004). The 

results indicate statistically significant (p-value = 0.053) differences in the asset dynamics 

above and below the threshold, with expected herd growth (collapse) above (below) the 

threshold.  The estimated frontier is piecewise quadratic in herd0-herd1 space, as higher 

order polynomial terms of lagged herd size have no statistically significant effect.20  

                                                 
19 Because one of the households is the successor of an initial household, we only have data for the last two 
years. Hence, we’re using an unbalanced panel, with 338 observations. 
20 We also ran this regression using cubic and quartic terms, but none of the higher-order polynomials were 
statistically significantly different from zero and one could not reject the null hypothesis that the higher-
order terms jointly have no effect on next period’s herd size, once one allows for the threshold effect.  The 
variable “no cattle at t-1” is included to control for the fact that the biology of herd growth is different 
when one has no cattle – growth can then only occur through purchases or gifts, both of which are very 
infrequent (Lybbert et al. 2004) – than when one has a positive herd size.  Although the point estimate on 
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Household labor and land endowments have no effect at the margin on expected herd 

growth, signaling that these are not limiting in this environment for most households. 

Male-headed households enjoy significantly higher herd growth rates, which may partly 

capture household composition effects (with male-headed households having more men 

able to herd, holding labor availability constant).  There exist statistically significant, 

albeit diminishing, marginal returns to herding experience.  And there are marginally 

significant fixed effects associated with location and year (for 2001-2, the year of 

recovery after the severe 1999-2000 drought), the latter result reinforcing our earlier 

finding about state-dependent growth. 

Using the predicted value of each herder’s estimated technical inefficiency, we 

then divide our sample into two sub-samples: lower ability (those in the 4th quartile of the 

inefficiency estimates, above 15.38) and a complementary category of higher ability 

herders. The distribution of the inefficiency estimates (with cattle as the units) is 

presented in figure 7,21 allowing a visual analysis of the diversity within each sub-sample. 

The observations are concentrated within a limited range of inefficiency estimates, 

suggesting that there may be little value to further subdivision of the sample.22  

For each of these classes we re-estimated equation (2), obtaining estimates of the 

parametric models that relate expected and initial herd size23 for each sub-sample.  After 

                                                                                                                                                 
this variable is statistically insignificantly different from zero, when we do not control for this effect, the 
estimated coefficients on lagged herd size and its various interactions become far more imprecise. 
21 Estimated using the Epanechnikov kernel, with a bandwidth of 0.24697.  
22 In an earlier version of this paper, we did experiment with splitting the higher ability herders into two 
categories, those of highest ability (the 1st quartile of the inefficiency distribution) and a residual medium 
ability class (the 2nd and 3rd quartiles). The qualitative results are similar, so we present the simpler 
approach.  
23 These 8 parametric models (4 states of nature x 2 ability classes) are qualitatively similar to the ones 
presented in Table 1. To conserve space, we omit them here but they are available from the authors upon 
request. 
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calibration of these models we performed the same simulations as above. Figure 8 shows 

the mean of 10-year-ahead herd size obtained for 500 replicates with initial herd sizes 

between 1 and 60 for each ability class. The results are easily summarized.  Although 

those in the lowest ability quartile exhibit S-shaped expected herd dynamics, these lie 

everywhere beneath the dynamic equilibrium line (the solid 45-degree line in figure 6).  

Thus, low ability herders are expected to converge towards the low level dynamic asset 

equilibrium of 1 or 2 head of cattle, just as Lybbert et al. (2004) found unconditional on 

ability. Higher ability herders likewise exhibit S-shaped expected herd dynamics.  

However, they face multiple dynamic equilibria, with a threshold (i.e., unstable dynamic 

equilibrium) at 12-17 cattle, similar to the threshold Lybbert et al. (2004) estimated in the 

herd history data. Notice also that, when we allow for different growth paths conditional 

on ability, we get much more precise estimates of the dynamics of this system.  In 

particular, both confidence bands cross the equilibrium line in three intervals, two of 

which represent stable equilibria. The implication, reflected in figure 8, is that S-shaped 

herd dynamics characteristic of a poverty trap are not followed by all herders. In 

particular, low ability herders face a unique dynamic equilibrium at lower levels of 

welfare, giving rise to a different sort of poverty trap than that faced by herders with 

higher ability, who expect to accumulate wealth so long as they start with an adequate 

herd size. Figure 9 presents the limiting distributions of the wealth transitions for the two 

ability groups, reinforcing this point. Herders of higher ability enjoy a probability of 

holding herds above 55 cattle that is almost 5 times that for herders of lower ability.  

These results clearly raise important practical questions with respect to any asset 

redistribution or transfer policy, as ability is not easily established, at least not by 
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outsiders such as the governmental and nongovernmental agencies that typically provide 

transfers and public safety net programs.24 Because of these critical policy implications, 

we sought to confirm this last result in the herd history data used by Lybbert et al. (2004). 

As before, we do that in two steps. First, we estimate a stochastic growth frontier, 

following equation (3), to obtain estimates of herder-specific, time-invariant inefficiency 

relative to the estimated growth frontier, and interpret these inefficiency estimates as a 

measurement of unobserved ability.  Given the longer panel, here we use decadal (ten 

year) transitions, rather than the annual transitions estimated in the more detailed 

PARIMA data.   But the limited variables in this dataset restrict the controls we can 

include to site fixed effects and the number, in the previous decade, of years of bad 

rainfall and of good rainfall. As a consequence the interpretation of estimated 

inefficiency as ability is considerably less clear than in our previous results.  

Nevertheless, as a check on the robustness of the previous result, we think it is useful. 

Finally, because we are interested in comparing our results with the ones from the 

previous section, we restrict the estimation of this efficiency frontier to herd sizes within 

the same range as found in the PARIMA data, below 100 cattle.25 Table 5 presents the 

estimation results.  

The first observation concerns the statistical insignificance of the explanatory 

variables. The effect of past herd sizes (here, with a lag of 10 years) is better expressed 

through a cubic function and we cannot find evidence of a threshold at an initial herd size 

of 15 cattle, as we found in the PARIMA data analyzed above. These results can be 

                                                 
24 Santos and Barrett (2006) explore the effects of ability and multiple equilibria on private, interhousehold 
transfers among these pastoralist households.  
25 The smaller maximum herd sizes in the PARIMA data than in the Desta/Lybbert data reflect declining 
median herd sizes as well, reflecting what most observers perceive as deepening poverty in the region.  



 19

explained both by the lack of detailed information on other covariates available in the 

PARIMA data, the much longer lag being explained and the overall differences between 

the two samples (for example, with respect to average herd size: 68.5 cattle in this sample 

versus 14.7 in the PARIMA data). As a consequence, not only are the inefficiency terms 

clearly different, they also explain a much share of total variation (r2=0.869 versus 0.229 

in Table 3). Figure 10 graphs the empirical density function.26 

With these estimates of herder-specific ability, we now explore the possibility of 

heterogeneous wealth dynamics within this sample using regression trees. This approach 

was used by Durlauf and Johnson (1995) and more recently by Tan (2005) to study 

economic growth in national-level data. Regression trees is a non-parametric technique 

introduced by Breiman et al. (1984) that allows the identification of an a priori unknown 

number of sample splits in order to maximize the fit of piecewise linear estimate of a 

regression function.27 At each split, the estimator defines increasingly homogeneous 

subsets, without the need to determine exogenously the threshold variables and values 

that mark such divisions. Given the lack of theory on how to select such variables, this 

approach has the double advantage of eliminating much of the arbitrariness in the 

analysis and of providing results that are structurally interpretable, in the sense that they 

reveal the relative importance of particular determinants of the relation being explained. 

Although the results have been shown to be consistent (Breiman et al., 1984), the 

limitation remains that there is no asymptotic theory to test the statistical significance of 

the number of splits identified.28. In what follows we’ll use the Generalized, Unbiased 

                                                 
26 Estimated using the Epanechnikov kernel, with a bandwidth of 6.9621.  
27 A very brief introduction to regression trees can also be found in Hardle (1990, chapter 10.1). 
28 Other approaches, such as the use of mixture models (Bloom, Canning and Sevilla 2000) can, in 
principle, overcome such problem but, given their computational cost, usually at the cost of reducing the 
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Interaction Detection and Estimation (GUIDE) algorithm, explained briefly in the 

Appendix and at length in Loh (2002).  

 The result of this procedure is the regression tree shown in figure 11. Empty 

circles indicate the splitting criteria while numbered circles represent terminal nodes that 

contain different subsamples. At each splitting point, the tree indicates the threshold 

variable and its value.  Observations with a value smaller than the threshold value follow 

the left branch from the node; those with a greater value follow the right branch. 

Consistent with our findings to this point, the first splitting variable is herder ability, 

which divides the sample into 164 observations on 24 lower ability herders (a much 

larger subsample than the lower quartile we arbitrarily imposed earlier) and 70 

observations on 21 higher ability herders. Within the subsample of lower ability herders, 

there does not appear to be any threshold in the herd growth function, consistent with our 

earlier findings using other data from this region.  Within the subsample of higher ability 

herders, however, a further split occurs, at the relatively high herd size of 66 head of 

cattle.  The sample splitting generated by the regression trees method thus reinforces the 

finding of a unique equilibrium for lower ability herders and multiple equilibria for the 

rest. 

 Our estimates of the herd growth models associated with each terminal node 

appear in Table 6 and are graphed in figure 12.29  Expected herd dynamics appear highly 

nonlinear in each regime. For the lower ability herders, however, the unique dynamic 

                                                                                                                                                 
number of admissible splits. Note also that the validity of the theory underlying the identification of 
thresholds through sample splitting proposed in Hansen (2000) is unclear when we consider more than one 
split of the original sample, as noticed by the author (p.588). 
29 The (perhaps counter-intuitive) lack of smoothness of these growth paths is a general result of the 
regression trees approach, given that splitting the data implicitly assumes that small changes in one variable 
lead to significant changes in behavior. 
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equilibrium occurs at a herd size of zero, qualitatively consistent with the earlier evidence 

of expected collapse into destitution. Interpretation of the higher ability herders’ expected 

wealth dynamics is somewhat complicated by inevitable extreme behaviors in the tails of 

each subsample, due to the low-order polynomial, parametric model being fitted.  But this 

too is qualitatively quite similar to our previous result. In particular, there appear multiple 

stable equilbria, in this case at 18-20 animals and around the sample splitting point of 66 

head for those within the range of herd sizes comparable to our earlier results.  

 

5. Expected growth and inequality among the Borana 

We now apply this simulation approach to analyze the expected evolution of 

wealth and inequality in our sample of respondents. We use the same approach as above 

on the subsample of 97 households that had cattle in 2003.30 Table 7 presents the results 

for expected average herd size 10 years ahead and for expected inequality, based on 500 

runs of our simulation procedure, first when we disregard the effect of herder ability 

(column b), then when we incorporate it (column c). 

The results are simple to interpret. When we take into consideration the role 

individual heterogeneity plays in shaping wealth dynamics, we should expect both an 

increase in average herd size and a large increase in inequality over time, as low ability 

herders collapse into destitution. If we simulate the evolution of the wealth of this 

population with a simpler approach that neglects such differences, then still expect an 
                                                 
30 From our sample of 120 respondents, 5 were not interviewed in 2003 and 18 had no cattle. Given that we 
did not elicited the expectations about herd evolution for this situation and that, to the best of our 
knowledge there are no reliable estimates of the rate of re-entry into pastoralism for herders who lose all 
their cattle, we dropped them from the simulation. Among those with no cattle in 2003, 5 households (or 
27%) were classified as of being of low ability, 11 (61%) as being of medium ability and the other 2 (11%) 
as being of high ability. 
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increase in inequality (although somewhat smaller), but with a decrease in average 

wealth.  

Finally, we explore the effectiveness of herd restocking in this system, as this is 

perhaps the most common form of post-drought assistance provided to pastoralists by 

donors and governments in the region. We simulate the effect of three different scenarios. 

In Scenario 1, all herds below 5 cattle (the Boran-defined poverty line) are given animals 

to boost their herd to 5 head.  In aggregate, that corresponds to a transfer of 36 cattle to 

17 beneficiaries. In Scenario 2, we simulate the effects of transferring (approximately) 

the same number of cattle – so as to compare mechanisms under a constant budget – but 

now targeted not to the poorest first but rather in order to maximize expected herd growth 

from the transfer, assuming there exists no effective mechanism to elicit herder ability. 

Scenario 2 involves a fictive transfer of 35 cattle to 13 beneficiaries. In Scenario 3, we 

assume one can accurately identify herder by ability group and, as with Scenario 2, again 

target transfers so as to maximize asset growth.  Scenario 3 involves transfers of 37 cattle 

to 16 high ability herders.  

The main difference between these scenarios is evident in Figure 13, where we 

draw the expected herd growth associated with the transfer of 1 cattle. Given expected 

herd dynamics over the decade following the hypothesized transfer, the transfer is 

expected to generate herd growth, net of the 1 cattle transfer, only for recipients with ex 

ante herd size between 7 and 22 head.  Those with the smallest (or largest) herds are 

expected to lose some of their post-transfer herd over the ensuing decade, signaling 

negative medium-to-long term growth returns on livestock transfers to the poorest (or 

wealthiest) herders. The expected herd gain is maximized for an ex ante herd size of 13 
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cattle, a significantly larger herd than is typical of restocking program participants, since 

such interventions are typically targeted following some wealth-sensitive process, like 

Scenario 1. 

Table 8 presents the results of a comparison among these three different scenarios 

for targeting herd restocking transfers. As one would expect based on the growth 

dynamics in the system, restocking targeted to the lower levels of wealth (specifically, 

those below 5 cattle) fails to promote growth among the poor. After 10 years, 

beneficiaries enjoy an expected gain of 1.35 cattle, but from an average transfer of 2.12 

cattle. This implies a -4.4% compound annual return on investment in transfer resources, 

given expected herd losses below the critical herd size threshold.  The growth-promoting 

impacts of herd restocking become more satisfactory in the other two scenarios. Under 

scenario 2, the average net returns to this policy after 10 years are 17% (1.6% annually).  

These more than double, to 37% (3.3% annually), under scenario 3, showing that the 

growth payoff to identification of a reliable mechanism for identifying herding ability is 

potentially considerable since ability seems to matter a great deal to wealth dynamics in 

this system. 

 

6. Conclusions 

Using unique data on household-level expectations of herd growth, collected 

through innovative empirical methods for eliciting subjective herd growth distributions, 

we find that southern Ethiopian pastoralists appear to understand the nonstationary herd 

dynamics that long-term herd history data suggest characterize their system, 

corroborating Lybbert et al.’s (2004) results using different data and methods.  A poverty 
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trap indeed seems to exist.  Moreover, their responses enable us to unpack the herd 

history data, revealing that multiple dynamic equilibria arise purely due to adverse shocks 

associated with low rainfall years and for pastoralists of higher herding ability.  Lower 

ability herders appear to converge towards a unique, low-level equilibrium herd size.  

Thus, the data suggest that even among a seemingly homogeneous population in an 

ethnically uniform region offering effectively only one livelihood option – livestock 

herding – there exist complex wealth dynamics characterized by distinct convergence 

clubs defined by individual ability and multiple dynamic equilibria for only a subset of 

those clubs.   

These findings carry two very general policy consequences.  First, the need for 

interventions to lift people out of – or prevent their collapse into – poverty traps, seems to 

depend on the nature of the adverse shocks, in particular whether their severity and 

frequency is such that growth under favorable states of nature is often and sharply 

reversed, making accumulation below a critical threshold unlikely, albeit not impossible. 

Risk mitigation to limit the frequency or magnitude of shocks may be as or more valuable 

than transfers to facilitate growth among the poorest.  Second, the appropriate means of 

social protection in this stochastic environment depends very much on individual 

characteristics, perhaps including difficult-to-observe characteristics such as ability. 

Identifying ability may be operationally difficult, but failure to take such characteristics 

into account may lead to ill-conceived efforts and wasted scarce resources.  
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Figure 1:  Herd dynamics, based on respondent subjective expectations (all cases) 
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Figure 2: Herd dynamics in southern Ethiopia, based on herd history data 

(reprinted from Lybbert et al. (2004)) 
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Figure 3: Expected herd dynamics conditional on rainfall conditions 
a) Bad rainfall conditions 

 

b) Good/normal rainfall conditions 
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Figure 4: Simulation method schematic 
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Figure 5: Simulated expected herd dynamics 
based on estimated state-conditional dynamics and stochastic rainfall 

 
Note: Dotted lines are bootstrapped confidence bands using 200 replicates. 
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Figure 6: Limiting distribution 

 

Note: Density estimates using a Gaussian kernel with variable bandwidth (Fox 1990). 
The underlying Markov matrix is a 12x12 matrix of equally spaced herd sizes, with the 
last category representing the interval [55, +4). 
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Figure 7: Empirical density function of inefficiency estimates 

 

Empirical density estimates obtained using an Epanechnikov kernel with 
bandwidth 0.2469 selected using Silverman’s rule of thumb. 
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Figure 8:  Expected herd dynamics: the effects of herder ability 

 

Note: dotted lines are bootstrapped confidence bands using 200 replicates. 
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Figure 9: Limiting distribution – the effect of ability 

 

Note: Density estimates using a Gaussian kernel with variable bandwidth (Fox 1990). 
The underlying Markov matrix is a 12x12 matrix of equally spaced herd sizes, with the 
last category representing the interval [55, +4). 
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Figure 10: Empirical density function of inefficiency estimates. 

 

Empirical density estimates obtained using an Epanechnikov kernel with 
bandwidth 6.962 selected using Silverman’s rule of thumb 
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Figure 11: Real herd dynamics: regression tree due to ability and initial herd size  

 

 

 

Piecewise-multiple linear least square GUIDE model. 
At each intermediate node, a case goes to the left  

node if and only if the condition is satisfied. 
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Figure 12: Predicted herd dynamics, conditional on ability and initial herd size 
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Figure 13: Expected gains from the transfer of 1 cattle 
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Table 1: Fixed Effects Estimates of Expected Herd Dynamics Conditional on Rainfall  
 

Rainfall Very good Good/normal Bad Drought 
herd0 1.293 1.477 0.528 0.246
 [0.000] [0.019] [0.224] [0.214]
herd02 0.026 0.009
 [0.010] [0.010]
herd03  -0.00039 -0.00017
 [0.0001] [0.0001]
Constant 0.897 0.179 0.513 -0.575
 [0.448] [0.415] [1.185] [1.083]
r2 0.986 0.984 0.792 0.589
Number of 
Observations 

61 96 192 61

  Note: Robust p-values within brackets. 

 

 

 

 

Table 2: Herd Size Transition Matrix (10 year period) 
(figures in cells reflect estimated probabilities) 

            ht+10 

ht     

0-4 5-14 15-39 > 40 

1-4 0.879 0.113 0.009 0.000 

5-14 0.575 0.262 0.133 0.030 

15-39 0.204 0.280 0.255 0.261 

40-60 0.136 0.230 0.291 0.343 
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Table 3: Stochastic Parametric Herd Growth Frontier Estimates  
 Point 

Estimate  
[p-value] 

herd size at t-1*above threshold 1.022 
 [0.000] 
herd size at t-1 squared * above threshold -0.000 
 [0.689] 
herd size at t-1* below threshold 0.890 
 [0.004] 
herd size at t-1 squared * below threshold -0.009 
 [0.681] 
no cattle at t-1 -1.126 
 [0.366] 
labor * above threshold -0.089 
 [0.611] 
labor * below threshold 0.099 
 [0.427] 
Land 0.022 
 [0.885] 
sex  1.333 
 [0.057] 
Experience 0.137 
 [0.052] 
experience squared -0.002 
 [0.174] 
Migrant -0.605 
 [0.544] 
2000-01 -0.740 
 [0.164] 
2001-02 1.553 
 [0.003] 
Dida Hara 1.870 
 [0.092] 
Qorate 0.026 
 [0.983] 
Wachille 0.827 
 [0.465] 
Constant 13.012 
 [0.947] 
µ 14.671 
σ2

: 4.331 
r2 0.230 
H0: cattle above threshold = cattle below 
threshold (prob > F) 

0.053 

Note: robust p-values within brackets.  



 44

Table 4: Explanatory variables: definition and descriptive statistics 
 

Variable Definition Mean 
(standard 
deviation)

herd size at t-1*above 
threshold 

Herd size in the previous period if greater 
than 15, 0 otherwise 

3.95 
(3.99) 

herd size at t-1* below 
threshold 

Herd size in the previous period if smaller or 
equal to 15, 0 otherwise 

4.17 
(12.08) 

no cattle at t-1 Dummy variable, equal to 1 if the respondent 
has no cattle in the previous period, 0 
otherwise 

0.185 
(0.389) 

labor * above threshold Family size, if herd size in the previous period 
is greater than 15, 0 otherwise 

3.44 
(3.38) 

labor * below threshold Family size, if herd size in the previous period 
is smaller or equal than 15, 0 otherwise 

0.87 
(2.67) 

Land Land cropped in June 2000 1.12 
(2.25) 

sex  Dummy variable, equal to 1 if the respondent 
is male 

0.639 
(481) 

Experience Number of years between start of herd 
management  

20.26 
(14.07) 

Migrant Dummy variable, equal to 1 if the respondent 
migrated to the are where currently lived 

0.210 
(0.408) 

Dida Hara Dummy variable, equal to 1 if the respondent 
lives in Dida Hara 

0.25 
(0.43) 

Qorate Dummy variable, equal to 1 if the respondent 
lives in Qorate 

0.25 
(0.43) 

Wachille Dummy variable, equal to 1 if the respondent 
lives in Wachille 

0.25 
(0.43) 
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Table 5: Stochastic Parametric Herd Growth Frontier Estimates  

 
 

Note: robust p-values within brackets.  

 

 

 

 

 

 

 

 

Dependent variable: Herdt Point estimate 
[p-value] 

Herdt-10 0.141 

 [0.779] 
Herdt-10

2  0.001 

 [0.914] 
Herdt-10

3 -0.000 

 [0.985] 
Good rainfall  0.005 
 [0.997] 
Bad rainfall -1.907 
 [0.178] 
Mega 0.613 
 [0.963] 
Arero -5.009 
 [0.713] 
Negelle -13.120 
 [0.294] 
Constant 206.316 
 [0.976] 
µ 68.511 
σ2

: 795.561 
r2 0.869 
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Table 6: Herd dynamics 

Terminal node Inefficiency > 65.42 Inefficiency # 65.42 
& Herdt-10 # 66 

Inefficiency # 65.42 
& Herdt-10 > 66 

Variable Point estimate 
[p-value] 

Point estimate 
[p-value] 

Point estimate 
[p-value] 

Herdt-10 2.162 -6.739 268.360 
 [0.000] [0.007] [0.020] 
Herdt-10

2  -0.0043 0.246 -3.074 
 [0.001] [0.002] [0.027] 
Herdt-10

3 0.00027 -0.00231 0.0116 
 [0.000] [0.001] [0.036] 
Yabello 1.263 0.145 53.630 
 [0.573] [0.136] [0.000] 
Mega 4.495 -4.217 48.427 
 [0.084] [0.570] [0.000] 
Arero 1.388 -1.468  
 [0.584] [0.016]  
Low rain 2.036 2.607 -18.317 
 [0.007] [0.208] [0.002] 
High rain 0.741 -1.337 -20.183 
 [0.278] [0.534] [0.497] 
Constant -1.905 74.395 -7604.675 
 [0.000] [0.014] [0.016] 
Number of observations 
in subsample 

164 41 29 

r2 0.28 0.76 0.71
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Table 7: Expected evolution of wealth and inequality among the Borana. 

 2003 
 

(a) 

2013 
(disregarding ability) 

(b) 

2013 
(considering ability) 

(c) 
Average herd size 12.76 

(1.49) 

10.47 

(3.59) 

14.59 

(8.11) 

Gini coefficient on 

herd size 

0.46 

(0.05) 

0.66 

(0.04) 

0.71 

(0.07) 

Note: values in column (a) reflect the situation among the 97 respondents in the PARIMA 
sample that had cattle in 2003. Values in columns (b) and (c) are the expected values of 
the statistics for 500 runs of our simulation procedure. Values within parentheses are 
standard errors. The standard deviation for the Gini coefficient was computed using the 
algorithm described in Karagiannis and Kovacevic (2000). 

 

 

Table 8: Expected effects of restocking under different targeting assumptions 

Expected herd size  
(2013) 

Scenario Number Average 
Transfer 

Average 
herd size 
(2003) 

w/ transfer w/out transfer 

Expected 
gains from 

transfer 

1 Beneficiaries 17 2.12 2.88 4.06 2.71 1.35 

 Non- Beneficiaries 80 0 14.86 12.05 12.05 - 

2 Beneficiaries 13 2.69 12.54 14.63 11.48 3.15 

 Non- Beneficiaries 84 0 12.80 10.25 10.25 - 

3 Beneficiaries 16 2.31 11.69 18.76 13.62 5.14 

 Non- Beneficiaries 81 0 12.97 16.64 16.64 - 
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Appendix: Regression trees analysis 

This Appendix describes the construction of a regression tree using Generalized, 

Unbiased, Interaction Detection and Estimation (GUIDE). Loh (2002) is the central 

reference, while Loh (2005) explains how to use the program, which is freely 

downloadable from www.stat.wisc.edu/~loh/, and how to interpret the output. 

We start by considering four categories of variables, as a function of their type 

(numerical(N)/ categorical(C)) and their role in the model (fit the model(F)/ split the 

tree(S)/ both): 

 Fit Split Fit + Split 

Numerical F S N 

Categorical F * C N * 

* in these cases, the variable is converted to a dummy 

variable. We use the same designation regardless of the role. 

The algorithm proceeds in three steps: 1) choice of the splitting variable at each node of 

the tree; 2) choice of the splitting value and finally, 3) cost-complexity pruning.  Steps 1) 

and 2) construct two mutually exclusive subsets at each node, starting with the set of all 

observations and stopping when the number of observations in the subsets falls below a 

predetermined (chosen) value. To avoid over-fitting the data, the tree is pruned back 

using a cost-complexity algorithm.  

The choice of the split variable proceeds as follows: 

1) obtain the residuals from the regression on the N and F variables; 

2) for each numerical variables used to split the sample (either S or N), divide the 

data into 4 groups at the sample quartiles; construct a 2x4 contingency table with 

the signs of the residuals (positive/ non-positive) as rows and the groups as 

columns; count the number of observations in each cell and compute the P2 

statistic and its p-value from the P2
3 distribution; 

http://www.stat.wisc.edu/~loh/
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3) do the same for each categorical variable used to split the sample (either C or N), 

taking the categories of the variable as the columns; omit those columns with zero 

column totals; 

4) to detect interactions: 

4.1) between pairs of variables, divide the space formed by them into 4 quadrants 

by splitting each in two at the sample median; construct a 2x4 contingency table 

(with residuals as rows and each quadrant as columns); compute the P2 statistic 

and its p-value; 

 4.2) do the same for each S variable; 

4.3) use the value pairs of the C variables to divide the sample space; construct a 

2 x (c1 x c2) contingency table, where c1 and c2 are the number of unique values 

of each variable; compute the P2 statistic and its p-value, omitting those columns 

with zero column totals; 

4.4) compute the P2 statistic and its p-value for each pair (N, C) from a 

contingency table with 2 x (2 x c1) dimensions, omitting those columns with zero 

column totals; 

4.5) do the same for each pair (S, C); 

4.6) do the same for each pair (S, N), following 4.4); 

5) if the smallest p-value comes from one of the sets generated by steps 2) or 3), the 

associated variable is selected to split the node; 

6) if the smallest p-value comes from one of the sets generated by step 4), then use 

the following rules to select which, from among the interaction variables, is the 

splitting variable: 

 6.1) if only one of these variables is a N-variable, choose the other one; 

 6.2) if neither is a N-variable, choose the one with the smallest p-value, as 

computed from step 3); 

 6.3) if both are N-variables, split the node along the sample mean of each variable 

and choose the variable whose split yields the smaller total SSE. 

After this step, the split value for that variable has to be determined. This is done 

using the next algorithm: 
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1) define the partitions P1(v) and P2(v) as: 

 P1(v) = {(y, X) | xj # v } 

 P2(v) = {(y, X) | xj > v } 

where xj 0 Xj and Xj is the chosen split variable; 

2) regress y on X separately for each partition and obtain the residuals of these 

regressions (r1 and r2, respectively); 

3) choose v to be the value of the split variable that minimizes the sum of squared 

residuals:  

  1/n1 * r1
2 + 1/n2 * r2

2. 

 where n1 and n2 are the number of observations in each partition. 

Finally, once the most extensive tree is constructed, the algorithm “prunes” it to avoid 

over-fitting the data. This is done using cost-complexity pruning, where a penalty is put 

on overly complex trees: formally, the cost complexity criterion is expressed by 

(A.1)        C" (Tb) = 3n=1…b 3 (xi, yi) 0 n (yi - $nxi)2 + " * b     

where " is the penalty parameter (0 # " # 4), Tb represents a tree with b nodes. The 

objective of the algorithm is to identify the tree that minimizes C".  It proceeds in two 

steps: the construction of the optimal tree for each value of " (denote it by T*(")) and the 

choice of the optimal " (denote it by "*). Denote by T0 the tree originated when splits 

were costless (that is, " = 0).  

1) Start with T0 and increase ". 

2) Remove any terminal splits in T0 whose elimination reduces the value of equation 

(A1), producing a new tree. This is done by merging the observations in these 

terminal nodes in a new terminal node. 

3) Increase " by a chosen increment. 

4) Repeat Steps 2) and 3) until the nodes of tree have a unique element (by analogy 

with our previous notation, denote the resulting tree by T4). 

5) For each T*("), produce a V-fold cross validated estimate of the squared sum of 

residuals (SSR) in equation (A1). 
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6) Choose T*(") that minimizes the SSR.  

Breiman et al. (1984) show that each of the trees in the (finite) sequence between T0 

and T4 is unique and it must contain T*("*). The concept of V-fold cross-validation is 

explained in detail in Hastie et al. (2001, section 7.10). 

 


	wp201.pdf
	Fieldwork for this paper was conducted under the Pastoral Risk Management (PARIMA) project of the Global Livestock Collaborative Research Support Program (GL CRSP), funded by the Office of Agriculture and Food Security, Global Bureau, USAID, under grant
	
	
	Carter, Michael R. and Christopher B. Barrett (2006), “The Economics of Poverty Traps and Persistent Poverty: An Asset-Based Approach,” Journal of Development Studies 42(1): 178-199.
	Coppock, D.L. (1994) The Borana Plateau of Southern Ethiopia: Synthesis of Pastoral Research, Development and Change, 1980-91. International Livestock Centre for Africa Systems Study 5.  Addis Ababa: ILCA.
	Deininger, Klaus and John Okidi (2003) Growth and Poverty Reduction in Uganda, 1999-2000: Panel Data Evidence, Development Policy Review, vol. 21, n.3, pp. 481-509.





