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Heterogeneous wealth dynamics: 
On the roles of risk and ability 

 

 

Abstract:  
This paper builds on recent evidence of nonlinear wealth dynamics among Boran 
pastoralists in southern Ethiopia, consistent with the hypothesis of poverty traps. We 
study the causal mechanisms behind apparent poverty traps, exploring in particular the 
roles of adverse weather shocks and herder-specific ability to cope with such shocks in 
conditioning wealth dynamics.  Using original data collected among the same population, 
we establish pastoralists’ expectations of herd dynamics and show both that Boran 
pastoralists perceive the nonlinear long-term dynamics that characterize livestock wealth 
in the region and that this pattern results from adverse weather shocks. This result 
underscores the criticality of asset protection against exogenous shocks to facilitate 
wealth accumulation and economic growth.  We then disaggregate the sample, estimating 
a stochastic herd growth frontier to generate herder-specific estimates of unobservable 
ability so as to be able to condition wealth dynamics on ability.  We then find that those 
with low ability converge to a unique dynamic equilibrium at a small herd size, while 
those with high or medium estimated ability exhibit multiple stable dynamic wealth 
equilibria.  This result points to the importance of taking indicators of ability into 
consideration in the targeting of asset transfers, as we demonstrate with simulations of 
alternative post-drought herd restocking project designs.  
 
 
Keywords: ability, herd restocking, poverty traps, regression trees, shocks, subjective 
expectations. 
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1. Introduction 

Contemporary policy debates are rife with discussion of “poverty traps”.1 Yet the 

supporting empirical evidence on the existence of poverty traps remains quite mixed. 

Some studies (e.g., Dercon 1998, Lybbert et al. 2004, Adato et al. 2006, Barrett et al. 

2006) find support for the hypothesis while others (e.g., McKenzie and Woodruff 2003, 

Jalan and Ravallion 2004, Lokshin and Ravallion 2004, Antman and McKenzie 2005) 

find no evidence of a trap, as manifest by a threshold effect associated with multiple 

dynamic equilibria (with one such equilibrium below a poverty line).2 However, a 

poverty trap can also result from a unique dynamic equilibrium below a poverty line, as 

might be consistent with a hypothesis of “convergence clubs” based on intrinsic 

characteristics such as time preferences, location or immutable skills or disabilities.3 The 

convergence clubs and threshold-based multiple equilibrium explanations are not 

mutually exclusive.  In principle, there might be groups within a population for whom 

there exists a unique equilibrium associated with persistent poverty, others who face 

multiple equilibria and thus face wealth dynamics conditioned by their starting positions, 

and still others who converge towards a unique equilibrium above the poverty line 

regardless of their starting conditions.  This paper explores the possibility of such 

heterogeneous wealth dynamics.  

The policy implications of the convergence club and threshold-based multiple 

equilibria mechanisms differ markedly.  If poverty is a unique dynamic equilibrium 

because of immutable individual characteristics, ongoing social transfers may be the only 

                                                 
1 See, for example, Sachs (2005) or United Nations Millennium Project (2005). 
2 See Azariadis and Stachurski (forthcoming) or Bowles et al. (2006) for good reviews of the theoretical 
and early empirical literature on poverty traps 
3 Baumol (1986), DeLong (1988) and Canova (2004) define and discuss the estimation of convergence 
clubs in macroeconomic growth data.  
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available remedy for an unacceptably low independent standard of living.  But if poverty 

results from initial asset holdings insufficient to clear a critical minimum endowment 

threshold and thereby follow a positive accumulation path, then one-off asset transfers or 

changes to the productivity of existing assets can yield permanent increases in wealth and 

well-being and obviate the need for ongoing transfers.  If both processes are at play 

within a population, then effective targeting of appropriate interventions depends on 

identifying the relevant subpopulation to which a given poor household belongs. Sorting 

out the mechanisms that underpin persistent poverty is therefore enormously important in 

practical terms, but also quite difficult methodologically. 

The possibility of convergence clubs and/or multiple equilibria can be integrated 

as follows. Let yit be a strictly non-negative measure of economic well-being for cross-

sectional unit i in period t.  In our empirical implementation, this will be household 

wealth.  Household characteristics (e.g., savings propensities, geographic location or 

intrinsic ability) may sort cross-sectional units into a distinct cohort or club c, where 

c=1,…,C ,and  the parameters defining welfare dynamics in population may vary by club 

as assumed under convergence club models.  In addition, there may be some critical 

threshold value, 0≥cγ , at which the welfare dynamics bifurcate, with one path, 

subscripted ℓ, leading to a low-level equilibrium and another, subscripted h, leading to a 

high-level equilibrium, as hypothesized by multiple equilibrium models.  The union of 

the convergence club and multiple equilibria possibilities yields the following reduced 

form growth specification: 
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where gc(⋅) is some potentially cohort-specific and highly non-linear function that 

describes welfare dynamics, mapping initial well-being (yi0) into some future level t 

periods ahead and εit is a random component.  Setting γc=0 yields a simplified version of 

Canova’s (2004) method of optimally partitioning cross-sectional units into discrete clubs 

under the club convergence hypothesis.  Similarly, setting cj
c
j ∀= αα and cgg j

c
j ∀=  

reduces this specification to a variant of Hansen’s (2000) approach to the identification of 

multiple equilibrium thresholds. Both of those papers, indeed most of the literature on 

prospective poverty traps, offers empirical evidence at the macro level of growth using 

national-level real per capita income data. The methodological challenge is to unpack 

possible cohort-level cross-sectional variation in welfare dynamics while simultaneously 

allowing for the possibility of threshold effects.   

If one further allows for differences in expected growth conditional on states of 

nature, that is )(][ 0i
c
se

c
seist ygyE += α , for state s and equilibrium ),{ �he ∈ , then there 

exists one more dimension in which analysts need to allow for prospectively important 

variation. The recent literature on poverty traps emphasizes the importance of risk in the 

presence of multiple equilibria because shocks can cause agents to move from a high 

level equilibrium’s basin of attraction onto a path converging instead toward a low level 

equilibrium (Carter and Barrett 2006).  It may be that all agents follow a path dynamic 

that converges towards a high level equilibrium when they face favorable states of nature 

and that low-level equilibria only arise because shocks routinely knock some backwards, 

preventing self-insurance sufficient to lock-in one’s accumulated gains (Dercon 1998).  

In that case, risk can be a source of persistent poverty not only because it induces ex ante 

risk management that causes the poor to choose lower expected return portfolios 
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(Rosenzweig and Binswanger 1993) but because differential ability to cope ex post  with 

shocks may distinguish high performers from their less fortunate counterparts.   Thus, 

variation in welfare dynamics across states of nature may be central to understanding 

how both individual-level characteristics and initial conditions affect expected welfare 

dynamics.   

This paper explores these issues empirically.  We unpack and extend the results of 

Lybbert et al. (2004), who analyzed wealth dynamics among Boran pastoralists, a poor 

population in southern Ethiopia.  Cattle are the Boran’s major (in many cases, the only 

non-human) asset and herd evolution is characterized by boom-and-bust cycles 

determined by drought and biological reproduction. Using 17-year herd history data, 

Lybbert et al. find herd dynamics that follow an S-shaped curve with two stable dynamic 

equilibria (at roughly 1 and 35-40 cattle), separated by an unstable dynamic equilibrium, 

a threshold at 15-20 cattle. The authors conjecture that this threshold results from a 

minimum critical herd size necessary to undertake migratory herding to deal with 

spatiotemporal variability in forage and water availability.  Those with smaller herds are 

forced to stay near their base camps, where pasture conditions soon get degraded, leading 

to a collapse of herd size towards the low-level stable equilibrium, while those with 

bigger herds can migrate in search of adequate water and pasture, enabling them to 

sustain far larger herds.  We collected new data among the same population so as to 

explore the role of shocks and household-specific ability in shaping wealth dynamics.   

The next section briefly explains the data.  In section 3, we use data on 

pastoralists’ expectations of herd size one year ahead, given different values of initial 

herd size, to simulate long-run equilibria that correspond closely with those identified in 
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Lybbert et al. (2004).  Pastoralists appear to perceive the dynamics reflected in herd 

history data.  We disaggregate these dynamics as a function of respondents’ expected 

rainfall states and find that multiple equilibria arise exclusively in adverse states of 

nature.  Under favorable rainfall regimes, respondents’ subjective perceptions suggest a 

smooth asset growth process towards a unique, high-level dynamic equilibrium. Given 

manifest variation in expected herd dynamics under adverse states of nature, section 4 

explores the hypothesis that herder-specific ability, which we derive using stochastic 

frontier estimation methods, conditions wealth dynamics.  This appears true in both the 

herders’ expectations data and in herd history data. In Section 5 we apply this approach to 

the analysis of the (expected) evolution of the wealth of a sample of herders in this 

region.  We find evidence that the incorporation of ability does make a difference in 

terms of expected wealth and inequality in this system. Section 6 concludes, stressing the 

policy implications of these findings with respect to complex wealth dynamics and the 

centrality of shocks and individual ability to understanding the existence of multiple 

equilibria in this system. 

 

2. Data 

We employ three data sets. The first is that used by Lybbert et al. (2004), 

originally collected by and described in Desta (1999), reflecting 17 years of herd histories 

for 55 Boran  pastoralist households drawn from four communities (woredas) in southern 

Ethiopia (Arero, Mega, Negelle and Yabello).  Because 16 of the sample households 

were formed within the 17 year period, this is an uneven panel of data, with 833 total 

observations. The data were collected using a stratified random sampling design, using 
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detailed interviews held with entire extended families whose collective recall permitted 

the construction of reliable panel data on herd histories, including mortality, marketing, 

gifts and loans, slaughtering and calving.4 

The second consists of household survey data collected from 120 randomly 

selected Boran pastoralist households in the same four woredas of southern Ethiopia, 

although the respondent households differ from those Desta surveyed. These data were 

collected every three months, March 2000-June 2002, and then annually each September-

October starting in 2003.5 The data include rich detail on household composition, 

educational attainment (although very few respondents are literate or attended any 

school), migration histories, changes in herds, shocks, etc.   

The third data set consists of subjective expectations of herd dynamics we elicited 

from the PARIMA survey households in 2004. The use of elicited expectations to study 

decision-making was recently reviewed by Manski (2004). Although the efficacy of 

elicited expectations for testing economic hypotheses has been well established, most 

such studies have taken place in high-income countries.  Important exceptions are 

Delavande (2004), on the efficacy of contraceptive methods in Ghana, and Luseno et al. 

(2003) and Lybbert et al. (forthcoming) on pastoralists’ rainfall expectations in East 

Africa.  Given the paucity of studies of low-income country respondents’ subjective 

expectations, it is worth explaining in some detail how we elicited these data.  

                                                 
4 Prior studies have confirmed the reliability of herd history recall data collected among African pastoralists 
(Grandin 1983, Assefa 1990, Ensminger 1992).  
5 The data were collected by the Pastoral Risk Management (PARIMA) project of the USAID Global 
Livestock Collaborative Research Support Program.  Barrett et al. (2004) describe the location, survey 
methods and available variables.  
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We started by randomly selecting four hypothetical initial herd sizes for each 

respondent, one from each of the intervals defined by the equilibria identified by Lybbert 

et al. (2004).6 Respondents were then asked their expectations for rainfall next year 

(choosing between good, normal or bad7) and to assume a cattle herd of standard 

composition for the region (in terms of age and sex of the animals). After thus framing 

the problem, we asked each respondent to define the maximum and the minimum herd 

size they would expect to have one year later if they themselves started the year with the 

randomly assigned initial herd size. These bounds provide a natural anchor for the next 

step, in which we asked respondents to distribute, on a board, 20 stones among herd sizes 

between the minimum and the maximum previously elicited, thereby describing their 

subjective herd size distribution one year ahead conditional on the randomly assigned 

initial herd size. Finally, each respondent was asked if s/he had ever managed a herd 

approximately equal in size to the initial value provided as the random seed. The 

elicitation of the probability distribution function is an appropriate technique under these 

circumstances (Morgan and Henrion 1990) and allows us to compute conditional 

distributions and their moments. 

 

3. Expected herd dynamics 

                                                 
6 The intervals are [1,5), [5, 15), [15, 40) and [40, 60]. 
7 Published rainfall forecasts, such as those disseminated by the regional Drought Monitoring Centre and 
government and nongovernmental organization extension officers, use precisely this sort of trinomial 
rainfall forecast, so it is familiar to respondents (Luseno et al. 2003, Lybbert et al. forthcoming). The data 
were collected well into the rainy season, hence these are not uninformed priors. 
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Figure 1 presents the scatter plot and kernel regression8 relating expected herd 

size one year ahead (herd1) and initial herd size (herd0), conditional on ever having had a 

herd with a similar size for our sample of 441observations.9 The solid. 45-degree line 

from the origin represents the dynamic equilibria where herd sizes are equal across 

periods.  Three points emerge immediately from comparing pastoralists’ subjective 

expectations of one year-ahead herd dynamics (figure 1) with the dynamics revealed by 

Desta/Lybbert et al.’s herd history data (the dashed line in figure 2). First, both exhibit 

multiple dynamic equilibria consistent with the notion of a poverty trap.  Second, 

however, the equilibria identified by pastoralists appear to differ markedly from those 

apparent in herd history data, both with respect to their location and stability.  Notably, 

herd accumulation occurs for a wider range of initial herd sizes, while herd losses seem a 

relatively marginal occurrence. This would seem to suggest a different story from the one 

described by herd history data and detailed studies of the system (Coppock 1994). 

Finally, there is considerable dispersion in pastoralists’ expectations of herd dynamics 

conditional on a given starting herd size.  If one interprets this variation as reflecting 

pastoralist-specific herding abilities – assuming each pastoralist accurately perceives his 

or her own herd dynamics given his or her individual aptitude for herding – then this 

suggests that ability plays a significant role in wealth dynamics.   

                                                 
8 We use the Nadaraya-Watson nonparametric regression, with the Epanechnikov kernel and bandwidth of 
4.545. The value of bandwidth was selected using Silverman’s (1986) rule of thumb, as determined by the 
“bounds for Stata” package (Beresteanu and Manski 2000). We apply the same bandwidth choice 
procedure in the remainder of this paper. 
9 23 of the 464 total observations (116 respondents with four different starting values each) do not include a 
herd size prediction, either because respondents were unwilling to make predictions about rainfall or 
because they were unable to distribute the stones across the board. The latter problem occurred mainly for 
bigger initial herd sizes, when the difference between the maximum and the minimum was sometimes quite 
large.  Of the remaining 441 observations, in 285 cases (64.6%) the respondents had prior personal 
experience managing a herd of comparable size.  
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These casual comparisons invite more careful analysis, especially as regards the 

intersection of rainfall conditions and herder ability.  The pattern exhibited in the actual 

herd history data (figure 2) is the result of a mixture of environmental conditions over a 

period of 17 years.  Meanwhile, the data on herders’ subjective assessments of herd 

dynamics (figure 1) represent only the year-ahead expectation under necessarily more 

limited rainfall variability regimes.10  Put differently, the dashed line in figure 2 reflects 

herd dynamics conditional on rainfall across a varied mixture of states of nature while 

figure 1 reflects the union of the conditional dynamics with a more limited mixing.   

Figures 3a and 3b disaggregate herders’ subjective herd dynamics, now 

conditioning on rainfall expectations.  The difference is striking.  The relation between 

expected and initial herd size is nonlinear and suggests multiple equilibria only in the 

case of bad rainfall conditions.  Under good or normal climatic conditions (and perhaps 

unsurprisingly), herders expect herds to grow no matter the initial herd size. The 

dispersion around the expected values is also much bigger under conditions of bad 

rainfall than in a good or normal year. Herders exhibit far more heterogeneous beliefs 

about their ability to deal with adverse states of nature than with favorable ones.  If we 

are correct in attributing this feature of the data to individual ability, then such 

differences seem to matter most when times are tough.  

In order to simulate pastoralists’ long run expectations of herd dynamics, we need 

data on the expected behavior under more extreme conditions, namely severe drought and 

very good years. To obtain such information, we used a second questionnaire similar to 

                                                 
10 For example, Kamara, Swallow and Kirk (2003) identify three major droughts (1984/85, 1991/92 and 
1995/96) and two periods of excessive rains (1980/81 and 1997/98) in this region over the period covered 
by the Desta/Lybbert et al. data. To these natural disasters, one may add the generalized ethnic clashes 
between the Boran and the Gabra in 1992, following the fall of the Derg regime. 
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the one described above except that we defined rainfall conditions in advance.11 This 

instrument was fielded in only one of the four sites (Dida Hara). The results largely 

correspond with those already reported, showing an almost linear relation between 

expected and initial herd sizes in very good years and a highly nonlinear relation in cases 

of severe drought.12 

In order to generate herders’ subjective expectations of herd dynamics under a 

mixture of states of nature – corresponding to the solid line in figure 2, depicting ten year 

herd transitions in the Desta/Lybbert et al. data – we need to integrate information on 

herd growth expectations (i.e., the relation between herd1 and herd0) conditional on 

rainfall regimes with rainfall data.  We therefore simulate using the elicited 

expectations data previously described and monthly rainfall data for the 4 sites over the 

period 1991-2001.13 Since we must predict out-of-sample in simulating herd evolution for 

large values of initial herd size, we had to estimate the parametric relation between herd1 

and herd0. Conditional on each of the four rainfall scenarios (drought, poor rainfall, 

normal/good rainfall, very good), we estimate this relation with a respondent fixed effect 

specification, "i, taking advantage of having repeated observations, r, across different 

herd size intervals on each individual. We thus estimate 

(2)  iriirir     )f(h  h εα ++=  

                                                 
11 In particular, we asked respondents to consider herd evolution “as if” in 1999, the last major drought, or 
“as if” in a very good year, which we asked them to define based on their own experience. 
12 To conserve space, we omit graphics reflecting these data and nonparametric regressions, although plots 
corresponding to figures 1 and 3 are available upon request. 
13 Average rainfall was 490 mm/year, with a standard deviation of 152 mm/year. Given the skewness and 
the kurtosis of this distribution, we cannot reject the null hypothesis that rainfall follows a normal 
distribution. The minimum annual rainfall over the period was registered in 1999 (259 mm) and the 
maximum in 1997 (765 mm). The probability of such events is 0.064 and 0.035. Given these results, we 
assumed, for simulation purposes, a symmetric distribution, with a probability of extreme events (drought; 
or very good year) equal to 0.10. 
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where f(hir) is a polynomial function of initial herd size.14 Table 1 presents the estimates, 

which reflect the results displayed visually in figures 1 and 3: unambiguous, effectively 

linear expected growth under normal/good/very good rainfall conditions, but a nonlinear 

estimated relation between herd1 and herd0 only under conditions of poor rainfall (and 

drought), and with considerable dispersion so that the precision of those estimates is far 

less than under favorable rainfall regimes.  We then used these estimation results to 

simulate the expected evolution of herd sizes, properly calibrated to impose basic 

biological rules for livestock.15 Figure 4 presents the basic structure of the simulation 

procedure we used.  

Figure 5 presents the mean of 10-year ahead herd size and its smoothed plot16 for 

500 replicates of this simulation with initial herd sizes between 1 and 60. The results are 

remarkably similar to the dynamics revealed by the herd history data (solid line in figure 

2), both in the general shape of the curve and in the location of the different equilibria.  

While the one year ahead transitions predicted by the two data sets (figure 1 and the 

dashed line in figure 2) did not match because of the fundamentally different underlying 

states of nature, once one takes into account historical rainfall patterns and simulates the 

                                                 
14 Besides the assumptions on the functional form of f(*), we also assumed that εei ~ N (0,z2). Other 
specifications, that replace the fixed effect with other regressors that could affect subjective expectations, 
such as gender, age, experience and migrant status, were considered, but none of those variables proved 
statistically significant, so we omit these results, which are available upon request. We omit higher order 
polynomial terms in the very good and good/normal year specifications because they added nothing given 
the good fit already achieved with a simple linear specification with fixed effects.  
The estimates of these last models estimated on the subsample of the observations on which the respondent 
has prior experience managing a herd with a similar size were not statistically different from the ones 
obtained when using the full sample. The same is not true when we estimate these models under conditions 
of bad rainfall or drought. We present the unconditioned models when rainfall is good or very good and the 
conditioned ones when rainfall is bad or drought occurs.  
15 More precisely, we do not allow for negative herds and impose that biological growth under good rainfall 
conditions is delayed in 2 years, i.e., enough for cows to reproduce. We also constrain the predicted values 
for initial herd sizes above 52 (poor rainfall) and 46 (drought) to be linear, with a slope of 0.1292 and 
0.0419, preventing unbelievable predictions due to the parameter estimates at the boundaries of our sample. 
16 The smoothed plot was obtained using an Epanechnikov kernel with bandwidth of 6.930.  
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longer-term, decadal herd dynamics, it appears that Boran pastoralists have a remarkably 

accurate understanding of the nature of how their herds evolve, including the implied 

existence of poverty traps.  That is, they expect that someone with a small herd – below 

approximately five cattle – will not accumulate wealth, but will instead collapse towards 

a destitute, sedentarized equilibrium with just one animal.  

In Table 2 we use these simulation results to quantify the probability of moving 

between equilibria.  In a strict, formal interpretation of the concept of a poverty trap, 

where initial conditions totally determine future wealth and the system is non-ergodic, 

these probabilities should be zero. This strict standard finds no support in our results. For 

example, a herder starting with a herd size between 1 and 4 cattle has a strictly positive 

probability of holding a herd between 15 and 39 cattle one decade later. However, that 

probability is extremely low (less than 1%), suggesting that, in this context, the idea of a 

poverty trap is associated with the notion of very slow, stochastic convergence towards 

higher levels of welfare, a weaker but widely used interpretation of the concept 

(Azariadis and Stachurski forthcoming).  

Summarizing the results so far, we find that Boran pastoralists accurately perceive 

long-term herd dynamics characterized by multiple wealth equilibria consistent with the 

notion of a poverty trap, in the sense of very slow, probabilistic convergence to higher 

levels of welfare.  However, these dynamics seem entirely the result of an asymmetry in 

growth rates under different rainfall conditions.  Growth is universally expected in good 

years while S-shaped dynamics seem to result from wealth-differentiated capacity to deal 

with bad rainfall conditions.  Our data also show that, even in bad years, not all herders 

expect their herds to shrink. The considerable interhousehold dispersion of beliefs about 
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herd dynamics under adverse states of nature suggests that herder-specific characteristics, 

perhaps especially unobserved husbandry skills and related talents we summarize as 

“ability”, may likewise play a central role in conditioning wealth dynamics among these 

Ethiopian herders. The next section investigates this hypothesis via two different 

methods. 

 

4. Ability and expected herd dynamics 

Herding is a difficult livelihood.  One must know how to treat livestock diseases 

and injuries, protect cattle against predators, manage their nutrition, navigate to distant 

grazing and watering sites, assist in difficult calving episodes, etc.  Not everyone learns 

and practices these diverse skills equally well.  One would naturally expect more skilled 

herders to enjoy faster herd growth and to be less subject to adverse shocks to herd size 

than less skilled herders.  Put differently, the herd dynamics explored in Lybbert et al. 

(2004) and in the previous section may ignore salient differences in herder ability. 

We explore the impact of differences in herding ability upon herd dynamics by 

using the PARIMA panel data on pastoralist households to estimate herder ability using 

stochastic parametric frontier estimation methods for panel data (Kumbhakar and Lovell 

2000).  More precisely, we estimate the herd growth frontier conditional on household 

attributes and initial period herd size using a composed error term that includes a 

symmetric random component reflecting standard sampling and measurement error, ψ , 

and a one-sided term reflecting observation-specific but time invariant inefficiency,φ ≥0, 

which we assume follows a truncated normal distribution, N+(µ,σ2
Q): 
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(3)    itiit1- tiit    X  )f(h  h ψφβ +−+=  

Since these households have been surveyed since 2000, we can take advantage of 

multiple observations for each herder to compute consistent herder-specific mean 

efficiency measures, i.e., each pastoralist’s proximity to the herd growth frontier that 

provide at least a coarse proxy for herder-specific ability that is not otherwise directly 

observable.17   

Table 3 presents estimates of the herd growth frontier based on 2000-1, 2001-2 

and 2002-3 annual observations for the 113 households for which we have complete data 

on each of the covariates.18  Table 4 defines these variables and presents the descriptive 

statistics. Notice that we use an exogenous switching regressions formulation to 

incorporate the possibility of two different growth paths, depending on whether the 

herder is above or below the 15 cattle threshold identified by Lybbert et al. (2004). The 

results indicate statistically significant (p-value = 0.053) differences in the asset dynamics 

above and below the threshold, with expected herd growth (collapse) above (below) the 

threshold.  The estimated frontier is piecewise quadratic in herd0-herd1 space, as higher 

order polynomial terms of lagged herd size have no statistically significant effect.19  

                                                 
17 An earlier version of this paper used the data on expected herd growth, described in the previous section, 
to estimate the growth frontier.  The results were qualitatively identical.  However, two strong assumptions 
underpin the use of expectations data rather than actual herd history data: that one’s ability classification is 
not conditional on rainfall conditions and that pastoralists incorporate accurate self-assessment of their own 
herding ability into their expectations of herd dynamics.  The latter point was of special concern, as one 
could easily conflate optimism for ability in expectations data.  
18 Because one of the households is the successor of an initial household, we only have data for the last two 
years. Hence, we’re using an unbalanced panel, with 338 observations. 
19 We also ran this regression using cubic and quartic terms, but none of the higher-order polynomials were 
statistically significantly different from zero and one could not reject the null hypothesis that the higher-
order terms jointly have no effect on next period’s herd size, once one allows for the threshold effect.  The 
variable “no cattle at t-1” is included to control for the fact that the biology of herd growth is different 
when one has no cattle – growth can then only occur through purchases or gifts, both of which are very 
infrequent (Lybbert et al. 2004) – than when one has a positive herd size.  Although the point estimate on 
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Household labor and land endowments have no effect at the margin on expected herd 

growth, signaling that these are not limiting in this environment for most households. 

Male-headed households enjoy significantly higher herd growth rates, which may partly 

capture household composition effects (with male-headed households having more men 

able to herd, holding labor availability constant).  There exist statistically significant, 

albeit diminishing, marginal returns to herding experience.  And there are marginally 

significant fixed effects associated with location and year (for 2001-2, the year of 

recovery after the severe 1999-2000 drought), the latter result reinforcing our earlier 

finding about state-dependent growth. 

Using the predicted value of each herder’s estimated technical inefficiency, we 

then divide our sample into three sub-samples: low ability (those in the 4th quartile of the 

inefficiency estimates, above 15.38), high ability (those in the 1st quartile, below 14.29) 

and a residual medium ability category (the 2nd and 3rd quartiles). The distribution of the 

inefficiency estimates (with cattle as the units) is presented in figure 6,20 allowing a 

visual analysis of the diversity within each sub-sample. The observations are 

concentrated within a limited range of inefficiency estimates, in particularly suggesting 

that the classes of high and medium efficiency may be quite similar.  

For each of these classes we re-estimated equation (2), obtaining estimates of the 

parametric models that relate expected and initial herd size21 for each sub-sample.  After 

calibration of these models we performed the same simulations as above. Figure 7 shows 

                                                                                                                                                 
this variable is statistically insignificantly different from zero, when we do not control for this effect, the 
estimated coefficients on lagged herd size and its various interactions become far more imprecise. 
20 Estimated using the Epanechnikov kernel, with a bandwidth of 0.24697.  
21 These 12 parametric models (4 states of nature x 3 ability classes) are qualitatively similar to the ones 
presented in Table 1. To conserve space, we omit them here but they are available from the authors upon 
request. 
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the smoothed plot of the mean of 10-year ahead herd size obtained for 500 replicates with 

initial herd sizes between 1 and 60 for each of the three ability classes.22 The results are 

easily summarized.  Although those in the lowest ability quartile exhibit S-shaped 

expected herd dynamics, these lie everywhere beneath the dynamic equilibrium line (the 

solid 45-degree line in figure 6).  Thus, low ability herders are expected to converge 

towards a low-level dynamic asset equilibrium at only 1 or 2 head of cattle, just as 

Lybbert et al. (2004) found unconditional on ability. Those that are not considered to be 

low-ability likewise exhibit S-shaped expected herd dynamics.  However, they face 

multiple dynamic equilibria, with a nearly identical threshold (i.e., unstable dynamic 

equilibrium) at 12-17 cattle, similar to the threshold Lybbert et al. (2004) estimated in the 

herd history data.  The high ability herders clearing the threshold enjoy a much higher 

upper equilibrium, however, at 54-55 cattle, as opposed to the medium ability herders’ 

upper equilibrium of 32-33 head. The implication, reflected in figure 7, is that S-shaped 

herd dynamics characteristic of a poverty trap are not a characteristic of all herders. In 

particular, low ability herders face a unique dynamic equilibrium at lower levels of 

welfare, giving rise to a different sort of poverty trap than that faced by medium and high 

ability herders, who expect to accumulate wealth so long as they start with an adequate 

herd size.  These results clearly raise important practical questions with respect to any 

asset redistribution or transfer policy, as ability is not easily established, at least not by 

outsiders such as the governmental and nongovernmental agencies that typically provide 

transfers and public safety net programs.23 

                                                 
22 Obtained using an Epanechnikov kernel with bandwidth of 6.930.  
23 Santos and Barrett (2006) explore the effects of ability and multiple equilibria on private, interhousehold 
transfers among these pastoralist households.  
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 Because of these critical policy implications, we sought to confirm this last result 

in the herd history data used by Lybbert et al. (2004). As before, we do that in two steps. 

First, we estimate a stochastic growth frontier, following equation (3), to obtain estimates 

of herder-specific, time-invariant inefficiency relative to the estimated growth frontier, 

and interpret these inefficiency estimates as a measurement of unobserved ability.  Given 

the longer panel, here we use decadal (ten year) transitions, rather than the annual 

transitions estimated in the more detailed PARIMA data.   But the limited variables in 

this dataset restrict the controls we can include to site fixed effects and the number, in the 

previous decade, of years of bad rainfall and of good rainfall. As a consequence the 

interpretation of estimated inefficiency as ability is considerably less clear than in our 

previous results.  Nevertheless, as a check on the robustness of the previous result, we 

think it is useful. Finally, because we are interested in comparing our results with the 

ones from the previous section, we restrict the estimation of this efficiency frontier to 

herd sizes within the same range as found in the PARIMA data, below 100 cattle.24 Table 

5 presents the estimation results.  

The first observation on these results is the statistical insignificance of the 

explanatory variables. The effect of past herd sizes (here, with a lag of 10 years) is better 

expressed through a cubic function and we cannot find evidence of a threshold at an 

initial herd size of 15 cattle, as we found in the PARIMA data analyzed above. These 

results can be explained both by the lack of detailed information on other covariates 

available in the PARIMA data and by the much bigger lag being explained. As a 

consequence, the inefficiency terms are clearly different, stressing the differences 

                                                 
24 The smaller maximum herd sizes in the PARIMA data than in the Desta/Lybbert data reflect declining 
median herd sizes as well, reflecting what most observers perceive as deepening poverty in the region.  
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between the two samples.  Not only is their average much bigger (68.5 cattle versus 14.7 

in Table 3), they also explain a much bigger part of the total variability (r2=0.869 versus 

0.229 in Table 3). Figure 8 graphs the empirical probability density function.25 

With these estimates of herder-specific ability, we now explore the possibility of 

heterogeneous wealth dynamics within this sample using regression trees. This approach 

was used by Durlauf and Johnson (1995) and more recently by Tan (2005) to study 

economic growth in national-level data. Regression trees is a non-parametric technique 

introduced by Breiman et al. (1984) that allows the identification of an a priori unknown 

number of sample splits in order to maximize the fit of piecewise linear estimate of a 

regression function. At each split, the estimator defines increasingly homogeneous 

subsets, without the need to determine exogenously the threshold variables and values 

that mark such divisions. Given the lack of theory on how to select such variables, this 

approach has the double advantage of eliminating much of the arbitrariness in the 

analysis and of providing results that are structurally interpretable, in the sense that they 

reveal the relative importance of particular determinants of the relation being explained. 

Although the results have been shown to be consistent (Breiman et al., 1984), the 

limitation remains that there is no asymptotic theory to test the statistical significance of 

the number of splits identified.26. In what follows we’ll use the Generalized, Unbiased 

Interaction Detection and Estimation (GUIDE) algorithm, explained briefly in the 

Appendix and at length in Loh (2002).  

                                                 
25 Estimated using the Epanechnikov kernel, with a bandwidth of 6.9621.  
26 Other approaches, such as the use of mixture models (Bloom, Canning and Sevilla 2000) can, in 
principle, overcome such problem but, given their computational cost, usually at the cost of reducing the 
number of admissible splits. Note also that the validity of the theory underlying the identification of 
thresholds through sample splitting proposed in Hansen (2000) is unclear when we consider more than one 
split of the original sample, as noticed by the author (p.588). 
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 The result of this procedure is the regression tree shown in figure 9. Empty circles 

indicate the splitting criteria while numbered circles represent terminal nodes that contain 

different subsamples. At each splitting point, the tree indicates the threshold variable and 

its value.  Observations with a value smaller than the threshold value follow the left 

branch from the node; those with a greater value follow the right branch. Consistent with 

our findings to this point, the first splitting variable is herder ability, which divides the 

sample into 164 observations on 24 lower ability herders (a much larger subsample than 

the lower quartile we arbitrarily imposed earlier) and 70 observations on 21 higher ability 

herders. Within the subsample of lower ability herders, there does not appear to be any 

threshold in the herd growth function, consistent with our earlier findings using other data 

from this region.  Within the subsample of higher ability herders, however, a further split 

occurs, at the relatively high herd size of 66 head of cattle.  The sample splitting 

generated by the regression trees method thus reinforces the finding of a unique 

equilibrium for lower ability herders and multiple equilibria for the rest. 

 Our estimates of the herd growth models associated with each terminal node 

appear in Table 6 and are graphed in figure 10.27  Expected herd dynamics appear highly 

nonlinear in each regime. For the lower ability herders, however, the unique dynamic 

equilibrium occurs at a herd size of zero, qualitatively consistent with the earlier evidence 

of expected collapse into destitution. Interpretation of the higher ability herders’ expected 

wealth dynamics is somewhat complicated by inevitable extreme behaviors in the tails of 

each subsample, due to the low-order polynomial, parametric model being fitted.  But this 

too is qualitatively quite similar to our previous result. In particular, there appear multiple 
                                                 
27 The (perhaps counter-intuitive) lack of smoothness of these growth paths is a general result of the 
regression trees approach, given that splitting the data implicitly assumes that small changes in one variable 
lead to significant changes in behavior. 



 21

stable equilbria, in this case at 18-20 animals and around the sample splitting point of 66 

head for those within the range of herd sizes comparable to our earlier results.  

 

5. Expected growth and inequality among the Borana 

We now apply this simulation approach to analyze the expected evolution of 

wealth and inequality in our sample of respondents. We use the same approach as above 

on the subsample of 97 households that had cattle in 2003.28 Table 7 presents the results 

for expected average herd size 10 years ahead and for expected inequality, based on 500 

runs of our simulation procedure, first when we disregard the effect of herder ability 

(column b), then when we incorporate it (column c). 

The results are simple to interpret. When we take into consideration the role 

individual heterogeneity plays in shaping wealth dynamics, we should expect both an 

increase in average herd size and a large increase in inequality over time, as low ability 

herders collapse into destitution. If we simulate the evolution of the wealth of this 

population with a simpler approach that neglects such differences, then still expect an 

increase in inequality (although somewhat smaller), but with a decrease in average 

wealth.  

Finally, we explore the effectiveness of herd restocking in this system, as this is 

perhaps the most common form of post-drought assistance provided to pastoralists by 

                                                 
28 From our sample of 120 respondents, 5 were not interviewed in 2003 and 18 had no cattle. Given that we 
did not elicited the expectations about herd evolution for this situation and that, to the best of our 
knowledge there are no reliable estimates of the rate of re-entry into pastoralism for herders who lose all 
their cattle, we dropped them from the simulation. Among those with no cattle in 2003, 5 households (or 
27%) were classified as of being of low ability, 11 (61%) as being of medium ability and the other 2 (11%) 
as being of high ability. 
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donors and governments in the region. We simulate the effect of three different scenarios. 

In Scenario 1, all herds below 5 cattle (the Boran-defined poverty line) are given animals 

to boost their herd to 5 head.  In aggregate, that corresponds to a transfer of 36 cattle to 

17 beneficiaries. In Scenario 2, we simulate the effects of transferring  (approximately) 

the same number of cattle – so as to compare mechanisms under a constant budget – but 

now targeted not to the poorest first but rather in order to maximize expected herd growth 

from the transfer, assuming there exists no effective mechanism to elicit herder ability. 

Scenario 2 involves a fictive transfer of 35 cattle to 13 beneficaries. In Scenario 3, we 

assume one can accurately identify herder by ability group and, as with Scenario 2, again 

target transfers so as to maximize asset growth.  Scenario 3 involves transfers of 36 cattle 

flow to 9 high ability herders.  

The main difference between these scenarios is evident in Figure 11, where we 

draw the expected herd growth associated with the transfer of 1 cattle. Given expected 

herd dynamics over the decade following the hypothesized transfer, the transfer is 

expected to generate herd growth, net of the 1 cattle transfer, only for recipients with ex 

ante herd size between 7 and 22 head.  Those with the smallest (or largest) herds are 

expected to lose some of their post-transfer herd over the ensuing decade, signaling 

negative medium-to-long term growth returns on livestock transfers to the poorest (or 

wealthiest) herders. The expected herd gain from a 1 cattle transfer is maximized for an 

ex ante herd size of 13 cattle, a significantly larger herd than is typically of restocking 

program participants since such interventions are typically target following some wealth-

sensitive variant of Scenario 1. 
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Table 8 presents the results of a comparison among these three different scenarios 

for targeting herd restocking transfers. A tradeoff arises between the number of 

beneficiaries, the size of the average transfer and the ex ante wealth of beneficiaries, with 

Scenario 1 providing fewer animals to more and poorer recipients, Scenario 3 providing 

more animals to fewer and wealthier beneficiaries, and Scenario 2 lying between these 

two. But, as one would expect based on the growth dynamics in the system, restocking 

targeted to the lower levels of wealth (specifically, those below 5 cattle) fails to promote 

growth among the poor. After 10 years, beneficiaries enjoy an expected gain of 1.35 

cattle, but from an average transfer of 2.12 cattle. This implies a -4.4% compound annual 

return on investment in transfer resources, given expected herd losses below the critical 

herd size threshold.  The growth-promoting impacts of herd restocking become more 

satisfactory in the other two scenarios. Under scenario 2, the average net returns to this 

policy after 10 years are 17% (1.6% annually).  These rise dramatically to 122% (8.3% 

annually), under scenario 3, showing that the growth payoff to identification of a reliable 

mechanism for identifying herding ability is potentially considerable since ability seems 

to matter a great deal to wealth dynamics in this system. 

 

6. Conclusions 

Using unique data on household-level expectations of herd growth and long-term 

herd histories, as well as some innovative empirical methods for eliciting subjective herd 

growth distributions, we find that southern Ethiopian pastoralists appear to understand the 

nonstationary herd dynamics that herd history data suggest characterize their system.  

Moreover, their responses enable us to unpack the herd history data, revealing that 
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multiple dynamic equilibria arise purely due to adverse shocks associated with low 

rainfall years and for pastoralists of intermediate or high herding ability.  Lower ability 

herders appear to converge towards a unique, low-level equilibrium herd size.  Thus, the 

data suggest that even among a seemingly homogeneous a population as pastoralists in an 

ethnically uniform region offering effectively only one livelihood option – livestock 

herding – there exist complex wealth dynamics characterized by distinct convergence 

clubs defined by individual ability and multiple dynamic equilibria for a subset of those 

clubs.   

The policy consequences of these results are important.  First, there indeed appear 

to exist poverty traps among this population, corroborating Lybbert et al.’s (2004) 

findings.  Second, the mechanisms that trap people in long-term poverty seem to vary 

within the population.  For those of low herding ability, livestock transfers – e.g., through 

post-drought restocking projects – seem an unwise investment, although this remains the 

primary intervention offer to help pastoralists recover from drought in the region.  

Identifying herders’ unobserved ability is indisputably tricky, and may require 

community-based targeting methods to take advantage of local information unavailable to 

central governments and external donors and nongovernmental organizations (Alderman 

2002).   For higher ability herders, our results suggest a need for safety net programs that 

safeguard minimum herd sizes – e.g., through water point improvements, preventive and 

curative veterinary treatments, supplemental feed deliveries – or provide restocking to at 

least the critical threshold necessary to resume herd growth. 
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Figure 1:  Herd dynamics, based on respondent subjective expectations (all cases) 
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Figure 2: Herd dynamics in southern Ethiopia, based on herd history data 

(reprinted from Lybbert et al. (2004)) 
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Figure 3: Expected herd dynamics conditional on rainfall conditions 
a) Bad rainfall conditions 

 

b) Good/normal rainfall conditions 
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Figure 4: Simulation method schematic 
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Figure 5: Simulated expected herd dynamics 
based on estimated state-conditional dynamics and stochastic rainfall 
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Figure 6: Empirical density function of inefficiency estimates. 

 

Empirical density estimates obtained using an Epanechnikov kernel with 
bandwidth 0.2469. The value of bandwidth was selected using 
Silverman’s rule of thumb. 
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Figure 7:  Expected herd dynamics: the effects of herder ability 
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Figure 8: Empirical density function of inefficiency estimates. 

 

Empirical density estimates obtained using an Epanechnikov kernel with 
bandwidth 6.962. The value of bandwidth was selected using Silverman’s 
rule of thumb 
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Figure 9: Real herd dynamics: regression tree due to ability and initial herd size  

 

 

 

Piecewise-multiple linear least square GUIDE model. 
At each intermediate node, a case goes to the left  
child node if and only if the condition is satisfied. 
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Figure 10: Predicted herd dynamics, conditional on ability and initial herd size 
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Figure 11: Expected gains from the transfer of 1 cattle 
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Table 1: Fixed Effects Estimates of Expected Herd Dynamics Conditional on Rainfall  
 

Rainfall Very good Good/normal Bad Drought 
herd0 1.293 1.477 0.655 0.264
 [0.000] [0.000] [0.035] [0.159]
herd02 0.016 0.005
 [0.167] [0.535]
herd03  -0.00019 -0.00011
 [0.161] [0.323]
Constant 0.897 0.179 0.382 -0.834
 [0.053] [0.668] [0.781] [0.711]
r2 0.986 0.984 0.792 0.6082
Number of 
Observations 

61 96 192 60

  Note: Robust p-values within brackets. 

 

 

 

 

Table 2: Herd Size Transition Matrix (10 year period) 

            ht+10 

ht     

0-4 5-14 15-39 40-60 

1-4 0.838 0.153 0.009 0.000 

5-14 0.558 0.287 0.133 0.023 

15-39 0.200 0.293 0.257 0.250 

40-60 0.130 0.243 0.300 0.331 
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Table 3: Stochastic Parametric Herd Growth Frontier Estimates  
 Point 

Estimate  
[p-value] 

herd size at t-1*above threshold 1.022 
 [0.000] 
herd size at t-1 squared * above threshold -0.000 
 [0.689] 
herd size at t-1* below threshold 0.890 
 [0.004] 
herd size at t-1 squared * below threshold -0.009 
 [0.681] 
no cattle at t-1 -1.126 
 [0.366] 
labor * above threshold -0.089 
 [0.611] 
labor * below threshold 0.099 
 [0.427] 
Land 0.022 
 [0.885] 
sex  1.333 
 [0.057] 
Experience 0.137 
 [0.052] 
experience squared -0.002 
 [0.174] 
Migrant -0.605 
 [0.544] 
2000-01 -0.740 
 [0.164] 
2001-02 1.553 
 [0.003] 
Dida Hara 1.870 
 [0.092] 
Qorate 0.026 
 [0.983] 
Wachille 0.827 
 [0.465] 
Constant 13.012 
 [0.947] 
µ 14.671 
σ2

: 4.331 
r2 0.230 
H0: cattle above threshold = cattle below 
threshold (prob > F) 

0.053 

Note: robust p-values within brackets.  
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Table 4: Explanatory variables: definition and descriptive statistics 
 

Variable Definition Mean 
(standard 
deviation)

herd size at t-1*above 
threshold 

Herd size in the previous period if greater 
than 15, 0 otherwise 

3.95 
(3.99) 

herd size at t-1* below 
threshold 

Herd size in the previous period if smaller or 
equal to 15, 0 otherwise 

4.17 
(12.08) 

no cattle at t-1 Dummy variable, equal to 1 if the respondent 
has no cattle in the previous period, 0 
otherwise 

0.185 
(0.389) 

labor * above threshold Family size, if herd size in the previous period 
is greater than 15, 0 otherwise 

3.44 
(3.38) 

labor * below threshold Family size, if herd size in the previous period 
is smaller or equal than 15, 0 otherwise 

0.87 
(2.67) 

Land Land cropped in June 2000 1.12 
(2.25) 

sex  Dummy variable, equal to 1 if the respondent 
is male 

0.639 
(481) 

Experience Number of years between start of herd 
management  

20.26 
(14.07) 

Migrant Dummy variable, equal to 1 if the respondent 
migrated to the are where currently lived 

0.210 
(0.408) 

Dida Hara Dummy variable, equal to 1 if the respondent 
lives in Dida Hara 

0.25 
(0.43) 

Qorate Dummy variable, equal to 1 if the respondent 
lives in Qorate 

0.25 
(0.43) 

Wachille Dummy variable, equal to 1 if the respondent 
lives in Wachille 

0.25 
(0.43) 
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Table 5: Stochastic Parametric Herd Growth Frontier Estimates  

 
 

Note: robust p-values within brackets.  

 

 

 

 

 

 

 

 

Dependent variable: Herdt Point estimate 
[p-value] 

Herdt-10 0.141 

 [0.779] 
Herdt-10

2  0.001 

 [0.914] 
Herdt-10

3 -0.000 

 [0.985] 
Good rainfall  0.005 
 [0.997] 
Bad rainfall -1.907 
 [0.178] 
Mega 0.613 
 [0.963] 
Arero -5.009 
 [0.713] 
Negelle -13.120 
 [0.294] 
Constant 206.316 
 [0.976] 
µ 68.511 
Σ2

: 795.561 
r2 0.869 
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Table 6: Herd dynamics 

Terminal node Inefficiency > 65.42 Inefficiency # 65.42 
& Herdt-10 # 66 

Inefficiency # 65.42 
& Herdt-10 > 66 

Variable Point estimate 
[p-value] 

Point estimate 
[p-value] 

Point estimate 
[p-value] 

Herdt-10 2.162 -6.739 268.360 
 [0.000] [0.007] [0.020] 
Herdt-10

2  -0.0043 0.246 -3.074 
 [0.001] [0.002] [0.027] 
Herdt-10

3 0.00027 -0.00231 0.0116 
 [0.000] [0.001] [0.036] 
Yabello 1.263 0.145 53.630 
 [0.573] [0.136] [0.000] 
Mega 4.495 -4.217 48.427 
 [0.084] [0.570] [0.000] 
Arero 1.388 -1.468  
 [0.584] [0.016]  
Low rain 2.036 2.607 -18.317 
 [0.007] [0.208] [0.002] 
High rain 0.741 -1.337 -20.183 
 [0.278] [0.534] [0.497] 
Constant -1.905 74.395 -7604.675 
 [0.000] [0.014] [0.016] 
Number of observations 
in subsample 

164 41 29 

r2 0.28 0.76 0.71
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Table 7: Expected evolution of wealth and inequality among the Borana. 

 2003 
 

(a) 

2013 
(disregarding ability) 

(b) 

2013 
(considering ability) 

(c) 
Average herd size 12.76 

(1.49) 

10.47 

(3.59) 

14.59 

(8.11) 

Gini coefficient on 

herd size 

0.46 

(0.05) 

0.66 

(0.04) 

0.71 

(0.07) 

Note: values in column (a) reflect the situation among the 97 respondents in the PARIMA 
sample that had cattle in 2003. Values in columns (b) and (c) are the expected values of 
the statistics for 500 runs of our simulation procedure. Values within parentheses are 
standard errors. The standard deviation for the Gini coefficient was computed using the 
algorithm described in Karagiannis and Kovacevic (2000). 

 

 

Table 8: Expected effects of restocking under different targeting assumptions 

Expected herd size  
(2013) 

Scenario Number Average 
Transfer 

Average 
herd size 
(2003) 

w/ transfer w/out transfer 

Expected 
gains from 

transfer 

1 Beneficiaries 17 2.12 2.88 4.06 2.71 1.35 

 Non- Beneficiaries 80 0 14.86 12.05 12.05 - 

2 Beneficiaries 13 2.69 12.54 14.63 11.48 3.15 

 Non- Beneficiaries 84 0 12.80 10.25 10.25 - 

3 Beneficiaries 9 4.00 13.22 24.15 15.26 8.89 

 Non- Beneficiaries 88 0 12.72 14.54 14.54 - 
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Appendix: Regression trees analysis 

This Appendix describes the construction of a regression tree using Generalized, 

Unbiased, Interaction Detection and Estimation (GUIDE). Loh (2002) is the central 

reference, while Loh (2005) explains how to use the program, which is freely 

downloadable from www.stat.wisc.edu/~loh/, and how to interpret the output. 

We start by considering four categories of variables, as a function of their type 

(numerical(N)/ categorical(C)) and their role in the model (fit the model(F)/ split the 

tree(S)/ both): 

 Fit Split Fit + Split 

Numerical F S N 

Categorical F * C N * 

* in these cases, the variable is converted to a dummy 

variable. We use the same designation regardless of the role. 

The algorithm proceeds in three steps: 1) choice of the splitting variable at each node of 

the tree; 2) choice of the splitting value and finally, 3) cost-complexity pruning.  Steps 1) 

and 2) construct two mutually exclusive subsets at each node, starting with the set of all 

observations and stopping when the number of observations in the subsets falls below a 

predetermined (chosen) value. To avoid over-fitting the data, the tree is pruned back 

using a cost-complexity algorithm.  

The choice of the split variable proceeds as follows: 

1) obtain the residuals from the regression on the N and F variables; 

2) for each numerical variables used to split the sample (either S or N), divide the 

data into 4 groups at the sample quartiles; construct a 2x4 contingency table with 

the signs of the residuals (positive/ non-positive) as rows and the groups as 

columns; count the number of observations in each cell and compute the P2 

statistic and its p-value from the P2
3 distribution; 

http://www.stat.wisc.edu/~loh/
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3) do the same for each categorical variable used to split the sample (either C or N), 

taking the categories of the variable as the columns; omit those columns with zero 

column totals; 

4) to detect interactions: 

4.1) between pairs of variables, divide the space formed by them into 4 quadrants 

by splitting each in two at the sample median; construct a 2x4 contingency table 

(with residuals as rows and each quadrant as columns); compute the P2 statistic 

and its p-value; 

 4.2) do the same for each S variable; 

4.3) use the value pairs of the C variables to divide the sample space; construct a 

2 x (c1 x c2) contingency table, where c1 and c2 are the number of unique values 

of each variable; compute the P2 statistic and its p-value, omitting those columns 

with zero column totals; 

4.4) compute the P2 statistic and its p-value for each pair (N, C) from a 

contingency table with 2 x (2 x c1) dimensions, omitting those columns with zero 

column totals; 

4.5) do the same for each pair (S, C); 

4.6) do the same for each pair (S, N), following 4.4); 

5) if the smallest p-value comes from one of the sets generated by steps 2) or 3), the 

associated variable is selected to split the node; 

6) if the smallest p-value comes from one of the sets generated by step 4), then use 

the following rules to select which, from among the interaction variables, is the 

splitting variable: 

 6.1) if only one of these variables is a N-variable, choose the other one; 

 6.2) if neither is a N-variable, choose the one with the smallest p-value, as 

computed from step 3); 

 6.3) if both are N-variables, split the node along the sample mean of each variable 

and choose the variable whose split yields the smaller total SSE. 

After this step, the split value for that variable has to be determined. This is done 

using the next algorithm: 
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1) define the partitions P1(v) and P2(v) as: 

 P1(v) = {(y, X) | xj # v } 

 P2(v) = {(y, X) | xj > v } 

where xj 0 Xj and Xj is the chosen split variable; 

2) regress y on X separately for each partition and obtain the residuals of these 

regressions (r1 and r2, respectively); 

3) choose v to be the value of the split variable that minimizes the sum of squared 

residuals:  

  1/n1 * r1
2 + 1/n2 * r2

2. 

 where n1 and n2 are the number of observations in each partition. 

Finally, once the most extensive tree is constructed, the algorithm “prunes” it to avoid 

over-fitting the data. This is done using cost-complexity pruning, where a penalty is put 

on overly complex trees: formally, the cost complexity criterion is expressed by 

(A.1)        C" (Tb) = 3n=1…b 3 (xi, yi) 0 n (yi - $nxi)2 + " * b     

where " is the penalty parameter (0 # " # 4), Tb represents a tree with b nodes. The 

objective of the algorithm is to identify the tree that minimizes C".  It proceeds in two 

steps: the construction of the optimal tree for each value of " (denote it by T*(")) and the 

choice of the optimal " (denote it by "*). Denote by T0 the tree originated when splits 

were costless (that is, " = 0).  

1) Start with T0 and increase ". 

2) Remove any terminal splits in T0 whose elimination reduces the value of equation 

(A1), producing a new tree. This is done by merging the observations in these 

terminal nodes in a new terminal node. 

3) Increase " by a chosen increment. 

4) Repeat Steps 2) and 3) until the nodes of tree have a unique element (by analogy 

with our previous notation, denote the resulting tree by T4). 

5) For each T*("), produce a V-fold cross validated estimate of the squared sum of 

residuals (SSR) in equation (A1). 
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6) Choose T*(") that minimizes the SSR.  

Breiman et al. (1984) show that each of the trees in the (finite) sequence between T0 

and T4 is unique and it must contain T*("*). The concept of V-fold cross-validation is 

explained in detail in Hastie et al. (2001, section 7.10). 
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