Empirical Forecasting of Slow-Onset Disasters for Improved Emergency Response

An Application to Kenya's Arid Lands

Andrew Mude, Christopher B. Barrett, John McPeak, Robert Kaitho, Patti Kristjanson

Pastoralism and Poverty Reduction in East Africa: A Policy Research Conference

27-28 June 2006 -- Safari Park Hotel -- Nairobi -- Kenya

Objective

 Develop an empirical forecasting model to predict the human impact of slow-onset disasters for early warning.

Motivation

 Increasing frequency of humanitarian crises call for efficient and practical methods of emergency needs assessment.

Geographic Focus: Kenya's Arid North

- Highly vulnerable to recurring shocks such as droughts and floods
- Largely populated by nomadic pastoralists

Data

- Arid Lands Resource Management Project
 - Livestock Variables
 - Child Nutritional Data
- Global Livestock CRSP (LEWS/LINKS)
 - Climate Variables

Sample Sites

Severe Child Malnutrition and Food Crisis

- Forecasting food crisis requires a suitable indicator variable
- Child anthropometric measures of acute malnutrition typically used
- Mid-Upper Arm Circumference (MUAC)
 - Superior predictor of child mortality
- A MUAC Z-Score of -2 often used as an indicator of "severe wasting"
- Our Indicator of Food Crisis: Whenever 20% or more of children are suffering severe wasting.

Early Warning: Forecasting Food Crisis

Effective response requires early warning

• Two-forecasting models:

- 1) One Month Forecast: Better accuracy, less response time
- 2) Three-Month Forecast: Less accurate, more response time

Forecast Results

Fraction of Children Experiencing "Severe Wasting"

- Frequent experience of food crisis
- Forecasts trace actual values quite well and improve with time
- Difference between one-month and three-month forecast accuracy not considerable

Making Practical Use of the Forecasts

Example: Food Security Organization

- Predictions in the form of intensity of severe wasting
- Decision making parameters
 - Minimum likelihood of food crisis required before initiating emergency response
 - Defining a "correct decision":
 - Initiating response when there is actually a food crisis
 - No response when there is no food crisis
- Forecast Performance
 - Fraction of correct decisions

Forecast Performance

	Confidence Threshold		
	75%	66%	50%
Forecast Horizon	Fraction of Correct Decisions		
One Month	0.777	0.786	0.785
Three Month	0.753	0.756	0.758
	Fraction of Errors that are Type 1		
One Month	0.328	0.275	0.214
Three Month	0.341	0.288	0.212

Type 1 Errors: Failing to respond when a famine actually occurs.

Conclusions/Policy Implications

- Developed an empirical forecasting model that can predict with reasonable accuracy the expected human impact of slow onset shocks such as drought.
- Model is based on a non-restrictive set of variables making it quite cost effective
- Model can be easily and regularly updated with new information that should continuously increase its forecast performance
- Invaluable for early warning and emergency response to food crisis

Acknowledgements

• Arid Lands Research Management Project

- Global Livestock CRSP
 - Pastoral Risk Management (PARIMA)
 - Livestock Early Warning System (LEWS)
 - Livestock Information and Knowledge System (LINKS)
- International Livestock Research Institute
- World Food Program